SERVOSTAR 640...670

Variateur numérique S600

Manuel d'Instructions

Edition 11/2018 Traduction du manuel original Valide pour la révision du produit 02.20

Pour une utilisation appropriée et en toute sécurité, respectez ces instructions. Conservez-les à des fins de référence ultérieure.

KOLLMORGEN

Catalogues déjà parus :

Edition	Remarque	
01/2002	Première édition	
06/2002	Nouvelles pages de couverture, suppression de l'affectation des équipements, ajout des références des accessoires, exemples de branchement pour réseaux particuliers, déplacement du schéma-bloc	
02/2006	Nouvelles pages de couverture, nom de l'entreprise actualisé, nouvelle structure donnée au chapitre 1, nouvelle inductance moteur, nouvel EtherCAT, nouveau SynqNet, nouveaux codes pour passer commande, paragraphe retours remanié	
09/2006	Nombre de révision du produit, disposition acc. to WEEE-2002/96/EG, nouvelle structure, nouvelles pages de couverture, nouveau Quickstart	
04/2007	Clé de type, protection contre les contacts, BISS, Trouble-Shooting, composants d'un servosystème, raccordement aux réseaux diverts, rétroaction, mise en marche et arrêt, emulation ROD, AS, circuit intermédiaire, accessoires	
07/2007	Diagramme frein d'arrêt du moteur, exemple cat.3 EN954-1	
06/2008	Hiperface, déclaration de conformité CE, mise hors service	
08/2008	SCCR->42kA	
07/2010	Exemples d'arrêt d'urgence déplacés à WIKI, HWR 2.10, notes pour frein, WIKI links, logo, repair, disposal	
12/2010	Company name and address, CE certificate, name plate, fax form	
02/2015	-AS- according to EN954-1 (not functional safe any more). Gost-R removed, CE declaration of	
12/2015	Fax form removed, safe to touch voltage 60V->50V, LVD 2014-35-EG, EMCD 2014-30-EG	
07/2016	Chapter Handling extended, warning notes updated, KCM, Emergency-Off/Stop updated	
11/2018	Disposition des avertissements mise à jour, expertise utilisateur mise à jour, nouvelle note à l'attention des lecteurs sur la page de garde, Wiki remplacé par KDN	

Révision du produit

Hardware Révision	Révision micrologiciel	Classification Export	
00.00	>= 5.99	AL-3A225	Standard
02.06	>=6.68	AL-3A225	with BiSS
00.40	>=7.76	AL-3A225	CAN Controller new, Standard
02.10	>=6.86	AL-3A225	CAN Controller new, avec BiSS/EtherCAT
02.20	>= 7.76_ND1	AL-3A225	New data structure, Standard
02.20	>= 6.86_ND1	AL-3A225	New data structure, BiSS/EtherCAT Support
02.20	>= 7.76_ND0	-	New data structure, Standard
02.20	>= 6.86_ND0	-	New data structure, BiSS/EtherCAT Support

WINDOWS est une marque déposée de la Microsoft Corp.

HIPERFACE est une marque déposée de la Max Stegmann GmbH.

EnDat est une marque déposée de la Dr. Johannes Heidenhain GmbH

EtherCAT est marque déposée et technologie brevetée, autorisées par Beckhoff Automation GmbH sercos® est une marque déposée de la sercos® international e.V.

Sous réserve de modifications techniques apportés en vue d'amélioration des appareils !

Sans autorisation écrite de l'entreprise Kollmorgen Europe GmbH, aucune partie de cet ouvrage n'a le droit d'être ni reproduite par des moyens quelconques (photocopie, microfilm ou autre procédure) ni traitée, polycopiée ou distribuée au moyen de systèmes électroniques.

		Ра	ge
1	G	énéralités	
	1.1	A propos de ce manuel	. 7
	1.2	Remarques relatives à la version en ligne (format PDF)	
	1.3	Symboles utilisés dans ce manuel	
	1.4	Normes utilisées dans ce manuel	
	1.5	Abréviations utilisées	
2		écurité	. •
_	2.1	Vous devriez faire attention à ce chapitre	10
	2.1	Utilisation conforme	
	2.3	Utilisation non conforme	
	2.3	Avertissements sur le produit.	
3		·	13
3		anutention	4.4
	3.1	Transport	
	3.2	Emballage	
	3.3	Stockage	
		3.1 Mise hors service	
	3.4	Maintenance et nettoyage	
	3.5	Désinstallation	
	3.6	Réparation	
	3.7	Mise au rebut	16
4		utorisations	
	4.1	Conformité UL/cUL	
	4.2	Conformité CE	
	4.3	Directives et normes européennes pour le constructeur de machine	18
5	ld	lentification du produit	
	5.1	Etendue de la livraison	
	5.2	Plaque signalétique	19
	5.3	Clé de type	20
6	D	escription technique	
	6.1	Les variateurs numériques de la famille SERVOSTAR 640/670	21
	6.2	Données techniques	
	6.2	2.1 Couples de serrage recommendée	
	6.2	2.2 Protection	
	6.2	2.3 Conditions ambiantes, aération, position de montage	24
	6.2	2.4 Sections des conducteurs	
	6.3	Affichage DEL	
	6.4	Système de masse	25
	6.5	Commande d'excitation du frein d'arrêt du moteur	26
	6.6	Circuit ballast	27
	6.7	Mise en marche er arrêt	28
	6.	7.1 Comportement en mode normal	29
	6.	7.2 Comportement en cas d'erreur (configuration par défaut)	30
	6.8	Fonction d'arrêt/d'arrêt d'urgence selon la norme EN 60204	31
	6.8	8.1 Arrêt	31
	6.8	8.2 Arrêt d'urgence	32
	6.8	8.3 Coupure d'Urgence	32
	6.9	Protection contre les contacts	
	6.9	9.1 Courant de fuite	
	6.9	9.2 Interrupteur différentiel (FI)	
	6.9	9.3 Transformateurs de séparation de sécurité	
7		stallation mécanique	
•	7.1	Remarques Importantes	34
	7.2	Guide d'installation mécanique	
	7.3	Montage	
	7.4	Dimensions	
	/ . T		\sim

P	a	g	e
---	---	---	---

	•	uge
8 In	stallation électrique	
8.1	Remarques Importantes	
8.2	Guide d'installation électrique	
8.3	Câblage	
8.3		
8.3	2 Raccord de protection sur la platine avant	. 40
8.4	Composants d'un servosystème	
8.5	Schéma bloc	
8.6	Position des fiches	. 43
8.7	Schéma de raccordement (aperçu)	
8.8	Alimentation en tension	. 45
8.8	.1 Raccordement aux réseau diverts	. 45
8.8	2 Raccordement secteur (X0)	. 46
8.8	.3 Tension auxiliaire 24V (X4)	. 46
8.9	Circuit intermédiaire (X0)	. 46
8.9	.1 Résistance ballast externe (X0)	. 47
8.9	2 Modules Condensateur KCM	. 47
8.10	Raccordement moteur avec frein (X0, X4)	. 49
8.11	Rétroaction	. 50
8.1	1.1 Résolveur (X2)	. 51
8.1	1.2 Codeur sinus avec BiSS (X1)	. 52
8.1	1.3 Codeur sinus avec EnDat 2.1 ou HIPERFACE (X1)	. 53
8.1	1.4 Codeur sinus sans piste de données (X1)	. 54
8.1	1.5 Codeur incrémental / Codeur sinus avec Hall (X1)	
8.1		
8.1	1.7 Codeur incrémental (X5)	. 57
8.12	Arbre électrique, Master-Slave	. 58
8.1		
8.1		
8.1	2.3 Connexion de codeur sinus/cosinus (X1)	
8.1	2.4 Connexion de codeur SSI (X5)	
8.1	2.5 Connexion aux commandes de moteur pas à pas (impulse/direction)	61
	8.12.5.1 Connexion impulse/direction 5V (X5)	. 62
	8.12.5.2 Connexion impulse/direction 24V (X3)	. 62
8.13	Emulations codeur	. 63
8.1	3.1 Sortie codeur incrémentiel (X5)	. 63
8.1	3.2 Sortie SSI, absolu synchrone sérielle (X5)	
8.14	Entrées/Sorties digitales et analogiques	. 65
8.1	4.1 Entrées analogiques (X3)	. 65
8.1	4.2 Sorties analogiques (X3)	. 66
8.1	4.3 Entrées numériques (X3)	. 67
8.1	4.4 Sorties numeriques (X3)	. 68
8.15	Interface RS232, connexion de PC (X6)	
8.16	Interface CANopen (X6)	. 70
8.17	Verouillage de redémarrage -AS	. 71
8.1	7.1 Remarques en matière de sécurité	. 71
8.1	7.2 Utilisation conforme	
8.1	7.3 Schéma synoptique	
8.1	7.4 Description fonctionelle	
8.1	7.5 Diagramme de signaux (déroulement)	
8.1	7.6 Contrôle fonctionnel	
8.1	7.7 Schéma de raccordement (Principe)	
	7.8 Exemples d'utilisation Catégorie 1 selon EN954-1	
3.1	8.17.8.1 Circuit de courant de commande	
	8.17.8.2 Circuit de courant principal	
8 1	7.9 Exemples d'utilisation Catégorie 3 selon EN954-1	
5.1	8.17.9.1 Circuit de courant de commande	
	8.17.9.2 Circuit de courant principal	
	8.17.9.3 Organigramme	

			_
9	Mise e	n service	
	9.1 Rema	arques Importantes	. 78
	9.2 Logici	iel setup	79
	9.2.1	Généralités	79
	9.2.1.	1 Utilisation conforme	. 79
	9.2.1.	2 Description du logiciel	. 79
	9.2.1.	3 Exigences par rapport au matériel	. 80
	9.2.1.	4 Systèmes d'exploitation	. 80
	9.2.2	Installation sous WINDOWS	. 80
	9.3 Déma	arrage et test rapides	8
	9.3.1	Préparation	8
	9.3.2	Connexion	83
	9.3.3	Eléments importants de l'écran	. 84
	9.3.4	Réglages de base	8
	9.3.5	Moteur (synchrone)	. 86
	9.3.6	Feedback	8
	9.3.7	Enregistrement des paramètres et redémarraget	. 88
	9.3.8	Mode pas à pas (vitesse constante)	. 89
	9.3.9	Etat	90
	9.3.10	Moniteur	90
	9.3.11	Autres possibilités de configuration	
	9.4 Systè	mes à plusieurs axes	
	9.4.1	Adresse de station pour CAN bus	. 9
	9.4.2	Taux de bauds pour CAN bus	
	9.4.3	Exemple de raccordement du système à plusieurs axes	. 92
	9.5 Utilisa	ation des touches / Affichage DEL	. 93
	9.5.1	Utilisation	93
	9.5.2	Affichage d'état	93
	9.5.3	Structure du menu standard	. 94
	9.5.4	Structure du menu détaillé	. 94
	9.6 Messa	ages de default	9
	9.7 Messa	ages d'alarme	96
	9.8 Elimin	nation des défauts	97
10		d'expansion	
	10.1 Guide	e d'installation des cartes d'expansion	. 98
		d'expansion -I/O-14/08	
	10.2.1	Vue de face	99
	10.2.2	Données techniques	99
	10.2.3	Diodes électroluminescentes	. 99
	10.2.4	Sélectionner le n° de profil de mouvement	. 99
	10.2.5	Affectation des connecteurs	100
	10.2.6	Schéma de raccordement	
	10.3 Carte	d'expansion -PROFIBUS	102
	10.3.1	Vue de face	102
	10.3.2	Technique de raccordement	102
	10.3.3	Schéma de raccordement	102
	10.4 Carte	d'expansion -SERCOS	103
	10.4.1	Vue de face	103
	10.4.2	Diodes électroluminescentes	
	10.4.3	Technique de raccordement	103
	10.4.4	Schéma de raccordement	
	10.4.5	Modification de l'adresse de station	104
	10.4.6	Modification de la vitesse de transmission et de la puissance optique	
		d'expansion - DEVICENET	
	10.5.1	Vue de face	10
	10.5.2	Technique de raccordement	
	10.5.3	Schéma de raccordement	
	10.5.4	Combinaison LED de module/état du network	
	10.5.5	Réglage de l'adresse de station (adresse de l'appareil)	
	10.5.6	Réglage de la vitesse de transmission	
	10.5.7	Câble de bus	107

		Page
10.6 Cart	te d'expansion -EtherCat	
10.6.1	Vue de face	
10.6.2	LEDs	
10.6.3	Schéma de raccordement	108
10.7 Cart	te d'expansion -SYNQNET	109
10.7.1	Vue de face	109
10.7.2	NODE ID	109
10.7.3	Node DEL Table	109
10.7.4	Communication SynqNet, Connecteur X21B/C (RJ-45)	109
10.7.5	Entrées/sorties numériques, X21A (SubD 15 pôles, femelle)	110
10.7.6	Schéma de raccordement entrées/sorties numériques, X21A	
10.8 Mod	dule d'expansion -2CAN	111
10.8.1	Montage de la carte d'expansion	111
10.8.2	Vue de face	
10.8.3	Technique de raccordement	111
10.8.4	Affectation des connecteurs	
10.8.5	Schéma de raccordement	112
11 Annex	xe	
11.1 Glos	ssaire	113
11.2 Num	néros de commande	115
11.2.1	Variateurs	115
11.2.2	Cartes d'expansion	115
11.2.3	Contre-fiches	115
11.3 Rép	pertoire analytique	117

1 Généralités

1.1 A propos de ce manuel

Ce manuel décrit les variateurs numériques de la série SERVOSTAR 640/670 (modèle standard). Vous trouverez une description plus détaillée des cartes d'expansion actuellement disponibles et de la connexion numérique à des systèmes d'automatisation sur le CD-ROM annexé à ce manuel en format Acrobat-Reader (à partir de WINDOWS avec un Internet Browser et Acrobat Reader) en plusieurs versions linguistiques.

Vous trouverez les caractéristiques techniques et les plans côté des accessoires comme les câbles, les résistances ballast, les alimentations etc., dans le manuel des accessoires. Plus d'information peut être trouvée dans le "Kollmorgen Developer Network" kdn.kollmorgen.com.

1.2 Remarques relatives à la version en ligne (format PDF)

Signets: La table des matières et l'index sont des signets actifs.

Table des matières et index dans le texte : Les lignes sont des renvois actifs. Cliquez sur la ligne souhaitée et la page correspondante s'affiche.

Numéros de page/chapitre dans le texte : Les numéros de page/chapitre sont actifs pour les renvois : cliquez sur le numéro de page/chapitre pour accéder à l'emplacement indiqué.

1.3 Symboles utilisés dans ce manuel

Symbol	Indication
A DANGER	Indique une situation dangereuse qui, faute de prendre les mesures adéquates, entraînera des blessures graves, voire mortelles.
⚠ AVERTISSEMENT	Indique une situation dangereuse qui, faute de prendre les mesures adéquates, peut entraîner des blessures graves, voire mortelles.
▲ ATTENTION	Indique une situation dangereuse qui, faute de prendre les mesures adéquates, peut entraîner des blessures assez graves ou légères.
AVIS	Il ne s'agit pas d'un symbole de sécurité. Indique des situations qui, faute de prendre les mesures adéquates, peuvent entraîner des dommages matériels.
INFORMATION	Il ne s'agit pas d'un symbole de sécurité. Ce symbole indique des remarques importantes.
	Avertissement de danger (en général). Le type de danger est indiquée par le texte d'avertissement ci-contre.
4	Avertissement de tension électrique dangereuse et l'effet.
	Avertissement des surfaces chaudes.
	Avertissement d'une charge suspendue
	Avertissement de redémarrage automatique.

1.4 Normes utilisées dans ce manuel

Norme	Contenu
EN 4762	Vis à tête cylindrique à six pans creux
EN 12100	Sécurité des machines - Concepts de base, principes généraux de conception
EN 13849	Sécurité des machines - Pièces de sécurité des systèmes de commande
EN 60085	Isolation électrique - Évaluation et désignation thermiques
EN 60204	Sécurité des machines - Équipement électrique des machines
EN 60364	Installations électriques à basse tension
EN 60439	Ensembles d'appareillage de commande et d'appareillage à basse tension
EN 60664	Coordination de l'isolation pour le matériel dans les systèmes à basse tension
EN 60721	Classification des conditions environnementales
EN 61000	Compatibilité électromagnétique (CEM)
EN 61131	Unités de contrôle programmables
EN 61491	Équipement électrique des machines industrielles – Liaison des données sérielles pour communications en temps réel entre unités de commande et dispositifs d'entraînement
EN 61508	Sécurité fonctionnelle des systèmes de sécurité électriques/électroniques/électroniques programmables
EN 61800	Systèmes d'entraînement électriques à vitesse réglable
EN 62061	Sécurité fonctionnelle des systèmes de sécurité électriques/électroniques/électroniques programmables
EN 82079	Préparation des instructions - Structure, contenu et présentation
UL 840	Norme de sécurité UL relative à la coordination d'isolation, y compris distances de fuite et écartements des équipements électriques
UL 508C	Norme de sécurité UL relative aux équipements de conversion de puissance

EN - Commission Électrotechnique Internationale

UL - Underwriters Laboratories

1.5 Abréviations utilisées

Abrév.	Signification
AGND	Masse analogique
API	Automate programmable industriel
BTB/RTO	Prêt à fonctionner
CAN	Bus de champs (CANopen)
CE	Communité Européenne
CEM	Compatibilité électromagnétique
CLK	Clock (signal de synchronisation)
COM	Interface sérielle d'un PC
DEL	Diode électroluminescente
DGND	Masse numérique
DIN	Institut allemand de Normalisation
EEPROM	Mémoire morte effaçable par voie électrique
EN	Norme européenne
ESD	Déchargement électrostatique
F-SMA	Connecteur (Fibre Optique Câble) selon IEC 60874-2
IEC	International Electrotechnical Commission
IGBT	Insulated gate bipolar transistor
INC	Interface incrémentelle
ISO	International Standardization Organization
KDN	Kollmorgen Developer Networks
MO	Megaoctet
NI	Impulsion zéro
NSTOP	Fin de course (vers la gauche)
PC	Ordinateur individuel
PELV	Basse tension de protection
PGND	Masse de l'interface utilisée
PSTOP	Fin de course (vers la droite
PWM	Modulation d'impulsions en largeur
RAM	Mémoire volatile
R_{Br}	Résistance ballast
R _{Bext}	Résistance ballast externe
R _{Bint}	Résistance ballast interne
RES	Résolveur
SSI	Interface sérielle synchrone
UL	Underwriters Laboratories
V AC	Tension alternative
V DC	Tension continue
VDE	Association des Electrotechniciens allemands
XGND	Masse de la tension d'alimentation 24V

2 Sécurité

AVIS

S600 est pas destiné à faire réagir les caractéristiques de sécurité fonctionnelle. L'intégration dans une fonction de sécurité selon la norme EN 13849 ou EN 62061 est pas autorisé. La fonction STO peut être effectuée que par une déconnexion sûre de l'alimentation de la machine.

2.1 Vous devriez faire attention à ce chapitre

Lecture de la documentation

Lisez la documentation fournie avant le montage et la mise en service. Une mauvaise manipulation du variateur peut entraîner des dommages aux personnes et aux biens. L'exploitant doit donc s'assurer que toutes les personnes auxquelles sont confiés des travaux sur le système SERVOSTAR 640/670 ont bien lu le manuel d'utilisation, l'ont compris et que les instructions de sécurité de ce manuel sont respectées.

Analyse des risque

Le constructeur de la machine doit effectuer une analyse des risques liés à son équipement et prendre les mesures appropriées pour éviter que des mouvements imprévus ne provoquent des dommages aux personnes et aux biens. En fonction de l'analyse des risques, vous pouvez éventuellement donner des instructions supplémentaires au personnel spécialisé.

Personnel spécialisé

Seul un personnel dûment qualifié est autorisé à effectuer des opérations de transport, d'installation et de configuration. On entend par personnel spécialisé qualifié toute personne possédant une expertise dans le transport, l'installation, la mise en service et l'utilisation d'équipements électrotechniques.

- Transport, stockage, déballage : exclusivement réservés à un personnel possédant des connaissances en matière de manipulation de composants sensibles à l'électricité statique.
- Installation mécanique : uniquement réservée à un personnel possédant une expertise mécanique.
- Installation électrique : uniquement réservée à un personnel possédant une expertise électrotechnique.
- Mise en service: uniquement par du personnel spécialisé ayant des connaissances étendues dans les domaines de l'électrotechnique et des systèmes d'entraînement

Le personnel spécialisé doit également connaître et respecter les normes ISO 12100 / CEI 60364 /CEI 60664 et les règles nationales en matière de prévention des accidents.

Contrôle de la version matérielle

Vérifiez le numéro de version matérielle du produit (voir plaque signalétique). Ce numéro doit correspondre aux indications figurant sur la page de titre du présent manuel. Si les numéros ne correspondent pas, consultez notre "European File Archive" (http://www.wiki-kollmorgen.eu). Dans la rubrique "Download", vous trouverez toutes les versions du manuel en rapport avec le numéro de révision du matériel.

Prise en compte des données techniques

Respectez les caractéristiques techniques et les indications relatives aux conditions de raccordement (plaque signalétique et documentation). Le dépassement des valeurs de tension ou d'intensité autorisées peut entraîner des dommages sur le variateur._Un moteur inadapté ou un câblage incorrect risque d'endommager les composants du système. Vérifiez la combinaison du variateur et du moteur. Comparez la tension et l'intensité nominales des unités.

Composants sensibles aux décharges électrostatiques

Les variateurs contiennent des composants sensibles à l'électricité statique, qui peuvent être endommagés par des manipulations inadéquates. Evacuez la charge électrostatique de votre corps avant de toucher le variateur. Evitez de toucher des matériaux hautement isolants (fibres artificielles, film plastique, etc.). Posez le variateur sur une surface conductrice.

Redémarrage automatique

L'entraînement peut redémarrer automatiquement après la mise sous tension, creux de tension ou interruption de la tension d'alimentation, en fonction de la valeur du paramètre. Il existe un risque de blessures graves, voire mortelles, pour les personnes travaillant sur la machine.

Lorsque le paramètre AENA est défini sur 1, placez un panneau d'avertissement sur la machine (Avertissement : redémarrage automatique après la mise en marche !) et assurez-vous qu'il n'est pas possible d'enclencher la tension d'alimentation pendant que des personnes se trouvent dans la zone de danger de la machine.

En cas d'utilisation d'un dispositif de protection contre les sous-tensions, respectez EN 60204-1: 2006 Chapitre 7.5.

Surface chaude

Les surfaces des variateurs peuvent devenir très chaudes pendant le fonctionnement. Le dissipateur thermique peut atteindre des températures supérieures à 80°C. Risque de brûlures légères. Mesurez la température et attendez que le dissipateur thermique soit redescendu en-dessous de 40°C avant de le toucher.

Mise à la terre

Assurez-vous de la mise à la terre correcte du variateur, avec le profilé PE de l'armoire électrique comme potentiel de référence. Risque de choc électrique. Faute d'une mise à la terre de faible impédance, la sécurité des personnes n'est pas assurée et il existe un risque de choc électrique pouvant être mortel.

Courant de fuite!

Étant donné que le courant de fuite via le conducteur PE est supérieur à 3,5 mA, conformément à la norme CEI 61800-5-1, le raccordement du conducteur PE doit être doublé, ou un câble de connexion avec une section supérieure à 10 mm² doit être utilisé. Des mesures différentes conformes aux normes régionales peuvent être appliquées.

Hautes tensions

Les appareils produisent des tensions électriques élevées pouvant atteindre 900 V. En fonctionnement, selon leur indice de protection, les variateurs peuvent présenter des parties non isolées conductrices. Les condensateurs conduisent des tensions dangereuses jusqu'à 5 minutes après la déconnexion des tensions d'alimentation. Danger de mort par électrocution. En fonctionnement, maintenez tous les couvercles et portes d'armoires électriques fermés. Veillez à ne jamais ouvrir ni toucher les appareils pendant leur fonctionnement.

Ne débranchez pas les liaisons électriques avec le variateur tant que ce dernier est conducteur de tension. Il existe un risque d'arc électrique pouvant entraîner des dommages corporels (brûlures ou cécité) et des dommages matériels sur les contacts. Après avoir débranché le variateur de la tension d'alimentation, attendez au moins 5 minutes avant de toucher des parties conductrices (par exemple, contacts) ou de débrancher des connexions. Mesurez systématiquement la tension sur le circuit intermédiaire du bus DC et attendez que la tension soit descendue en-dessous de 50 V avant de toucher des composants.

Isolation renforcée

La sonde de température intégrée dans le moteur, les freins d'arrêt du moteur et les systèmes de recyclage doivent être pourvus d'une isolation renforcée (selon la norme EN 61800-5-1) par rapport aux composants systèmes dotés d'une tension d'alimentation, conformément à la tension d'essai requise de l'application. Tous les composants satisfont à ces exigences.

Interdiction de modifier les appareils

Toute modification apportée àu variateur sans l'autorisation du constructeur est illicite. L'ouverture des équipements annule la garantie et tous les certificats des appareils perdent leur validité Sur le boîtier symboles d'avertissement sont attachés. Des symboles d'avertissement endommagés doivent être remplacés immédiatement.

2.2 Utilisation conforme

- Les variateurs sont montés en tant que composants dans des installations ou des machines électriques. Ils ne peuvent être mis qu'en service en tant que composants intégrés de l'installation.
- Le constructeur de la machine doit faire établir une appréciation du risque pour la machine et prendre les mesures appropriées pour que des mouvements intempestifs n'entraînent pas des dommages corporels et/ou matériels.
- Les variateurs de la famille SERVOSTAR 640/670 sont exclusivement destinés à l'entraînement de servomoteurs synchrones à régulateur de couple, de vitesse et/ou de position. La tension nominale des moteurs doit être supérieure ou au moins égale à la tension du circuit intermédiaire délivrée par le variateur.
- L'utilisation des variateurs est exclusivement autorisée dans une armoire de manoeuvre fermée, en tenant compte des conditions ambiantes définies à la page 24.
 Pour obtenir une température sous 45°C ventilation ou refroidissement peut être nécessaire.
- Les variateurs de la série SERVOSTAR 640/670 (catégorie de surtensions III conformément à EN61800-5-1) peuvent être directement utilisés sur des réseaux triphasés industriels avec terre (réseaux TN, réseaux TT avec neutre mis à la terre, 42kA max. de courant nominal symétrique sous 480V +10%). En cas d'utilisation sur d'autres types de réseaux (avec transformateur séparateur supplémentaire), lire attentivement les instructions de la page 45.

AVIS

L'utilisation des bobines de choc et filtres de réseau externes est nécessaire.

- Les surtensions périodiques mesurées entre fils de phase extérieurs (L1, L2, L3) et le boîtier du variateur d'asservissement ne doivent pas excéder 1000V (en amplitude).
 - Conformément aux dispositions de la norme EN 61800, les pointes de tension (< 50μ s) ne doivent pas excéder 1000V entre phases. Les pointes de tension (< 50μ s) entre fils de phase extérieurs et le boîtier ne doivent pas excéder 2000V.
- Il faut impérativement utiliser des fils a cuivre pour tout raccordement. Diamètre suivant le norme EN 60204 (resp. tableau 310-16 de NEC 60°C ou 75°C colonne pour coupe AWG).
- Le variateur SERVOSTAR 640/670 n'a pas d'une fonction de sécurité suivant la norme EN 61800-5-2. Le système de verrouillage du démarrage -AS- ne doit pas être assimilé à la fonction STO. La fonction AS décrite est issue de la norme EN 945-1. Cette norme n'est plus reprise dans la directive Machine (2006/42/CE) depuis le 31.12.2012. Les exigences imposées aux variateurs par la norme EN 945-1 concernant la mise en place d'un système de verrouillage du redémarrage ont également été respectées.
- Lors de l'utilisation de verouillage de redémarrage -AS-, respectez les consignes spéciales page 72 pour une utilisation conforme à la destination.

2.3 Utilisation non conforme

- Toute utilisation différente de celle décrite au chapitre 2.2 est non conforme et peut provoquer des dommages sur les personnes, les machines et les biens.
- L'utilisation du variateur est interdite dans les environnements suivants :
 - zones à risque d'explosion et environnements avec acides, bases, huiles, vapeurs, poussières caustiques et/ou conducteurs d'électricité
 - directement sur le réseau non mis à la terre ou le réseau mis à la terre asymétrique avec UN > 230 V.
 - sur des bateaux ou installations offshore
- L'utilisation conforme du variateur est interdite lorsque la machine dans laquelle il a été monté
 - ne correspond pas aux dispositions de la directive machines CE
 - ne satisfait pas à la disposition de la directive CEM
 - ne satisfait pas à la disposition de la directive basse tension
- La commande des freins de maintien par le SERVOSTAR 640/670 seul ne peut pas être utilisée dans le cadre d'applications où la sécurité du personnel doit être assurée par le frein.

2.4 Avertissements sur le produit

Vorsicht!
Gefährliche Spannung.
Nach dem Abschalten
5 Minuten warten!

Traduction:
Attention!
Tension residuelle!
Attendre 5 minutes apres
mise hors tension!

AVIS

Des symboles d'avertissement endommagés doivent être remplacés immédiatement.

3 Manutention

3.1 Transport

- Uniquement par personnel qualifié dans l'emballage d'origine recyclable du constructeur
- Éviter les chocs brusques
- Température: –25 ... +70°C, 20 K / heure max. fluctuante
- Humidité de l'air: humidité rel. 95 % max., condensation non admise
- En présence d'un emballage endommagé, vérifier si l'appareil présente des dommages visibles. Informez le transporteur et, le cas échéant, le constructeur.

AVIS

Les variateurs contiennent des composants électrostatiquement menacés qui risquent d'être endommagés s'ils ne sont pas convenablement manipulés. Procéder à une décharge statique de votre corps avant de toucher directement au variateur. Eviter le contact de substances extrêmement isolantes (fibres synthétiques, feuilles plastiques, etc.). Déposer le variateur sur un support conducteur.

3.2 Emballage

- Carton recyclable
- Dimensions: (HxLxP) 410x470x490 mm
- Poids brut y compris accessoires env. 25 Kg
 ATTENTION: Poids lourd! Vous courez le risque de vous blesser au dos. Levez et déplacez les cartons uniquement à l'aide d'engins de levage.
- Identification : plaque signalétique dehors au carton

3.3 Stockage

- Uniquement dans l'emballage d'origine recyclable du constructeur
- Hauteur d'empilage max.: 3 cartons
- Température de stockage: -25. . . +55°C, max 20 K/heure fluctuante
- Humidité de l'air: humidité rel. 5...95 % max., condensation non admise
- Durée de stockage < 1 an : sans restriction
 Durée de stockage > 1 an : les condensateurs doivent être reformés avant la mise en service du variateur. A cet effet, débrancher tous les raccordements électriques.
 Puis, alimenter le variateur avec une phase pendant une trentaine de minutes en 230 V CA, sur les bornes L1 / L2.

3.3.1 Mise hors service

AVIS

Seuls des spécialistes en électrotechnique sont habilités à mettre des composants du système hors service.

DANGER: Tension mortelle! Il ya un risque de blessures graves ou la mort par choc électrique et de formation d'arc électrique.

- Coupez l'interrupteur principal de l'armoire de commande.
- Protégez le système contre toute remise en marche.
- Bloquez l'interrupteur principal.
- Attendez au moins 5 minutes.

3.4 Maintenance et nettoyage

L'appareil ne requiert aucune maintenance. Le fait d'ouvrir l'appareils annule la garantie. L'intérieur de l'unité ne peut être nettoyé que par le fabricant.

AVIS

N'immergez ou ne pulvérisez pas le dispositif. Évitez toute pénétration de liquides dans l'appareil.

Pour nettoyer l'extérieur d'appareil:

- 1. Mettez l'appareil hors service (voir chapitre 3.3.1 "Mise hors service").
- 2. Carter : nettoyez avec de l'isopropanol ou une solution de nettoyage similaire.

ATTENTION: Facilement inflammable! Risque de blessure par déflagration et d'incendie.

- Respectez les consignes de sécurité figurant sur l'emballage du produit de nettoyage.
- Après le nettoyage, patientez au moins 30 min. avant de remettre l'appareil en service.
- 3. Grille de protection du ventilateur : nettoyez à l'aide d'une brosse à sec.

3.5 Désinstallation

AVIS

Seuls des spécialistes en électrotechnique sont habilités à remplacer les composants du système.

- 1. Mettez l'appareil hors service (voir chapitre 3.3.1 "Mise hors service").
- 2. Vérifiez la température.

ATTENTION: Haute température! Risque de brûlures légères! Pendant le fonctionnement, le dissipateur thermique peut atteindre des températures supérieures à 80 °C. Avant de toucher le variateur, vérifiez la température et attendez qu'elle soit redescendue au-dessous de 40 °C.

- 3. Retirez les connecteurs. Déconnectez la prise de terre en dernier le cas échéant.
- 4. Démontage : desserrez les vis de fixation et retirez l'appareil.

3.6 Réparation

AVIS

Seuls des spécialistes en électrotechnique sont habilités à remplacer les composants du système.

ATTENTION: Démarrage automatique! Lors d'opérations de remplacement, une combinaison de dangers et de plusieurs événements peut se produire.

- Seul du personnel dûment formé et qualifié est habilité à travailler sur l'installation électrique, conformément aux réglementations sur la sécurité au travail, et uniquement en utilisant l'équipement de protection personnelle prescrit.

Remplacement du SERVOSTAR 600

Seul le fabricant est habilité à réparer l'appareil. Le fait d'ouvrir l'appareil annule la garantie.

- 1. Mettez l'appareil hors service (voir chapitre 3.3.1 "Mise hors service").
- 2. Désinstallation d'appareil (voir chapitre 3.5 "Désinstallation").
- 3. Renvoyez l'appareil au fabricant.
- 4. Installez un nouvel appareil conformément aux instructions de ce manuel.
- 5. Mettez le système en service, conformément aux instructions de ce manuel.

Remplacement d'autres éléments du système d'entraînement

S'il s'avère nécessaire de remplacer des éléments du système d'entraînement (par exemple, des câbles), procédez comme suit:

- 1. Mettez l'appareil hors service (voir chapitre 3.3.1 "Mise hors service").
- 2. Remplacez les éléments.
- 3. Vérifiez si toutes les connexions sont bien en place.
- 4. Mettez le système en service, conformément aux instructions de ce manuel.

3.7 Mise au rebut

AVIS

Pour une mise au rebut conforme de l'appareil, adressez-vous à une société certifiée de recyclage de déchets électroniques.

Conformément à la directive WEEE-2012/19/CE ou réglementation similaire, le fabricant accepte le retour d'appareils ou d'accessoires usagés pour une mise au rebut professionnelle. Les frais de transport incombent à l'expéditeur.

Mettez l'appareil hors service (voir chapitre 3.3.1 "Mise hors service") et désinstallation d'appareil (voir chapitre 3.5 "Désinstallation").

Contactez Kollmorgen et de clarifier la logistique.

4 Autorisations

Vous trouverez les certificats dans le "File Archive".

4.1 Conformité UL/cUL

Cet variateur d'asservissement est listé sous le numéro de fichier UL E217428.

Les variateurs homologués par le certificat UL/cUL (Underwriters Laboratories Inc.) sont conformes aux prescriptions US de lutte contre les incendies (dans ce cas UL 840 et UL 508C). La certification UL/cUL se rapporte exclusivement à la particularité de la construction mécanique et électrique de l'appareil.

Les prescriptions UL/cUL fixent entre autres les exigences techniques maximales auxquelles les appareils électriques doivent répondre afin de pouvoir assurer la prévention contre des risques d'incendie imminents susceptibles d'être causés par des appareils fonctionnant sur du courant. Le respect technique des prescriptions américaines de prévention contre les incendies est régulièrement vérifié par un inspecteur UL indépendant qui soumet régulièrement l'appareil à des tests de contrôle de conformité et d'homologation.

Le client n'est tenu d'observer, outre les remarques en matière d'installation et de sécurité figurant dans la documentation, aucun autre point qui serait en liaison directe avec la certification UL/cUL de l'appareil.

UL 508C: La directive UL 508C décrit le respect d'exigences minimales sur le plan de la construction auxquelles doivent satisfaire les appareils de conversion de puissance à fonctionnement électrique tels que les convertisseurs de fréquence et les variateurs et dont l'objectif est d'inhiber les risques de formation d'incendie dus à ces appareils.

UL 840: La directive UL 840 décrit le respect de la construction en matière de lignes de fuite et de distances explosives d'appareils électriques et de cartes imprimées.

Marquages Use 60°C or 75°C copper wire only. Utilisez un fil en cuivre 60°C ou 75 °C min.. Use Class 1 wire only. Utilisez seulement un fil de classe 1. Tightening torque for field wiring terminals. Couples de serrage recommandée X0: 6 to 8 Nm (53.10 to 70.81 lbf in). X0: 6 to 8 Nm (53.10 to 70.81 lbf in). Use in a pollution degree 2 environment. Utilisation dans un environnement de pollution de niveau 2. These devices provide solid state motor Ces variateurs offrent une protection contre overload protection at 130% of full load les surcharges de moteur à semi-conduccurrent. teur à 130 % du courant FLA nominal. These devices are not provided with motor Ces variateurs n'offrent pas de capteurs de over-temperature sensing. température excessive. Suitable for use on a circuit capable of deli-Ce produit est conçu pour une utilisation sur vering not more than 42kA rms symmetriun circuit capable de fournir 42 000 ampècal amperes for a max. voltage of 480 Vac, res symétriques (rms) maximum pour 480V, when protected by Class RK5 fuses. lorsqu'il est protégé par classe RK5 fusibles Integral solid state short circuit protection Une protection de court-circuit à does not provide branch circuit protection. semi-conducteur intégrale ne fournit pas de Branch circuit protection must be provided protection de la dérivation. Il convient de gain accordance with the National Electrical rantir une protection de la dérivation Code and any additional local codes. conforme au NEC (National Electrical Code) et aux réglementations locales en vigueur, ou aux directives équivalentes applicables. Rating of external Branch Circuit Fuses: Fusibles externes de circuit de dérivation:

Class RK5, 50A, 480V min (S6400) or

Class RK5, 80A, 480Vmin (S6700)

Classe RK5, 50A, 480V min (S6400) ou

Classe RK5, 80A, 480Vmin (S6700)

4.2 Conformité CE

Les variateurs ont été testés par un laboratoire d'essais homologué, dans une configuration spécifiquement définie, à l'aide des composants système décrits dans cette documentation. Toute divergence par rapport à la configuration et à l'installation décrites dans cette documentation signifie que l'utilisateur devra lui-même veiller à ce que l'appareil soit soumis à de nouvelles mesures afin que la législation soit dûment respectée.

Kollmorgen déclare la conformité des produits SERVOSTAR 640 (S640) et SERVOSTAR 670 (S670) avec les directives suivantes:

● la directive de l'UE sur la compatibilité électromagnétique (2014/30/CEE)

■ la directive de l'UE de basse tension (2014/35/CEE)

En ce qui concerne l'immunité au bruit, le variateur satisfait aux exigences de la catégorie du deuxième environnement (environnement industriel). Concernant le domaine des émissions, le variateur satisfait aux exigences d'un produit de catégorie C2 (câble moteur ≤ 25m). À partir d'une longueur de câble moteur de 25m, le variateur satisfait aux exigences de la catégorie C3.

AVIS

Ce produit peut générer, dans un local d'habitation, des parasites HF qui peuvent rendre obligatoires des mesures d'antiparasitage.

4.3 Directives et normes européennes pour le constructeur de machine

Les variateurs sont des composants définis pour être incorporés dans des installations / machines électriques du secteur industriel.

Lors de l'incorporation dans des machines / installations, la recette de l'exploitation conforme à la destination du variateur est interdite jusqu'à ce qu'il ait été établi que la machine / installation correspond aux définitions de

■ la directive de l'UE sur les machines (2006/42/CEE)

la directive de l'UE sur la compatibilité électromagnétique (2014/30/CEE)

la directive de l'UE de basse tension (2014/35/CEE)

Pour observer la directive sur les machines (2006/42/CEE), doivent être appliquées:

EN 60204-1 (sécurité et équipement électrique des appareils)

EN 12100 (sécurité des appareils)

AVIS

Le constructeur de la machine doit faire établir une appréciation du risque pour la machine et prendre les mesures appropriées pour que des mouvements intempestifs n'entraînent pas des dommages corporels et/ou matériels.

Le constructeur de la machine / l'installation doit vérifier si d'autres normes ou directives européennes sont applicables à sa machine / son installation.

À l'observation de la directive de basse tension (2014/35/CEE) doivent être appliqués: EN 60204-1 (sécurité et équipement électrique des appareils) EN 60439-1 (combinaisons de mécanisme de basse tension)

Pour observer la directive (2014/30/CEE), les normes suivantes doivent être appliquées: EN 61000-6-1 ou EN 61000-6-2 (immunité dans le secteur de logement/secteur industriel) EN 61000-6-3 ou EN 61000-6-4 (envoi parasite dans le secteur de logement/secteur industriel)

Le respect des valeurs limites de l'installation / machine exigées par la législation CEM est de la responsabilité du constructeur de l'installation / machine. Vous trouverez des remarques pour une installation conforme CEM - comme le blindage, la mise à la terre, la manipulation de connecteurs et la pose des câbles dans cette documentation.

Nous ne garantissons la conformité du système asservi aux normes énoncées ici que si les pièces livrées par notre maison sont utilisées.

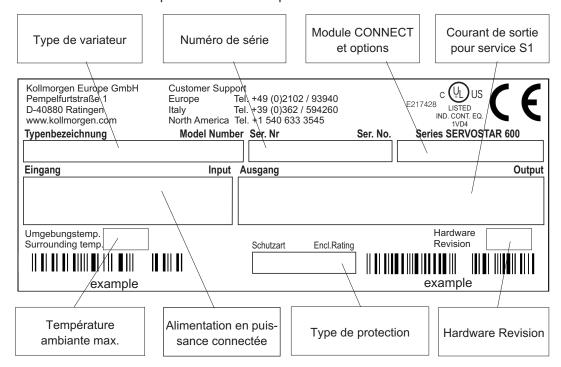
5 Identification du produit

5.1 Etendue de la livraison

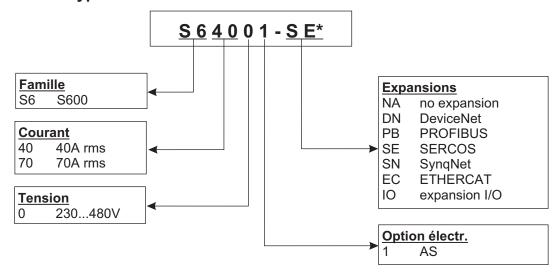
Si vous nous commandez des variateurs de la série SERVOSTAR 640/670 (numéros de commande ⇒ p.115), vous recavrez :

- SERVOSTAR 640/670
- Contre-fiche X3, X4

INFORMATION Les contre-fiches SubD ne sont pas partie de l'étendue de la livraison!


- Instructions de montage, d'installation et de mise en service
- Documentation en ligne (online) sur CD-ROM
- logiciel setup DRIVE.EXE sur CD-ROM

Accessoires: (à commander en sus si nécessaire; voir le manuel des accessoires)


- Filtre de réseau 3EF nécessaire
- Bobine de choc de réseau 3L nécessaire
- Servomoteur synchrône linéaire ou rotatif
- Câble moteur au mètre
- Câble du frein au mètre
- Câble de rétroaction (confectionné) ou les deux connecteurs de rétroaction séparés, avec câble de rétroact. au mètre
- Résistance ballast externe BAS principalement nécessairement
- Câble de communication vers le PC (⇒ S.69) ou adaptateur en Y (⇒ S.91) pour le paramétrage de 6 variateurs au maximum à un ordinateur.
- câbles d'alimentation secteur, de commande, de réseau de terrain (à chaque fois au mètre)

5.2 Plaque signalétique

La plaque signalétique représentée ci-dessous est apposée latéralement sur le variateur. Les cases individuelles présentent les inscriptions mentionnées ci-dessous.

5.3 Clé de type

^{*} le codage supplémentaire définit des particularités spècifiques pour clients

Confrontation (sans expansions) nom d'appareil - désignation du type

Nom d'appareil	Туре
SERVOSTAR 640	S64001-NA
SERVOSTAR 670	S67001-NA

6 Description technique

6.1 Les variateurs numériques de la famille SERVOSTAR 640/670

Exécution standard

- 2 intensités de courant (40 A , 70 A)
- Plage de tension nominale (de 3x208_{-10%} à 3x480V^{+ 10%})
- Catégorie de surtensions III conformément à EN 61800-5-1
- Raccordement de blindage directement sur le variateur
- CANopen intégrée (default : 500 kBaud), pour l'intégration dans des systèmes de CAN et pour le paramétrage de plusieurs variateurs via l'interface PC d'un variateur
- RS232 intégrée, à séparation de potentiel, Interface de sens d'impulsion intégrée
- AS- Relais de sécurité intégré (verrouillage de démarrage fiable pour le personnel), (⇒ S.71)
- Emplacement pour une carte d'expansion
- Connexion de moteurs d'asservissement synchrones, de moteurs linéaires ou asynchrones

Alimentation

Avec filtre et bobine de choc de réseau sur le réseau 3~ mis à la terre,

TN et réseau TT avec neutre mis à la terre, max. 42kA courant symétrique. Branchement à d'autres types de réseaux uniquement par l'intermédiaire d'un transformateur de séparation, ⇒ p. 45

INFORMATION

Pour l'exportation dans les pays avec des normes UL/cUL considérer-vous les indications supplémentaires dans les dépenses anglaises de ce manuel.

- Redresseur en pont B6 directement sur le réseau triphasé mis à la terre, circuit de démarrage intégrés
- Protection (p. ex. fusible) réalisée par l'utilisateur
- Tous les raccordements de blindage directement sur le variateur
- Etage final : module IGBT avec mesure de courant à potentiel flottant
 Circuit ballast : avec répartition dynamique de la puissance ballast sur
- avec repartition dynamique de la puissance ballast sur

plusieurs variateurs sur le même circuit intermédiaire,

- résistance ballast externe
- Tension de circuit intermédiaire 260. . . 900 V DC, commutable en parallèle
- Filtre de déparasitage intégré pour l'alimentation en tension auxiliaire 24 V (pour cat. C2)

INFORMATION

Filtre de déparasitage externe pour l'alimentation (pour cat. C2) nécessaire. Bobine de choc externe, nécessairement à la réduction des ondes de réseau.

Sécurité intégrée

- Séparation électrique fiable entre le raccordement secteur ou resp. moteur et l'électronique de signalisation par des lignes de fuite appropriées et par séparation complète du potentiel
- Démarrage en douceur, détection des surtensions, protection contre les courts-circuits, surveillance de défaillance de phase
- Surveillance de la température des variateurs et du moteur (en cas d'utilisation de nos moteurs avec nos câbles préconfectionnés)

Alimentation en tension auxiliaire 24V DC

 A séparation de potentiel provenant d'un bloc d'alimentation secteur 24 V CC externe, p. ex. avec transformateur d'isolement

Utilisation et paramétrage

- Au moyen du logiciel setup Kollmorgen confortable, via l'interface sérielle d'un ordinateur individuel (PC)
- Commande d'urgence par l'intermédiaire de deux touches, directement sur le variateur et indication DEL à trois positions pour l'affichage des états
- Entièrement programmable via interface RS232

Régulateur entièrement numérique

- Régulateur de courant numérique (indicateur d'espace modulation d'impulsions en largeur, 62,5 μs)
- Régulateur de vitesse numérique librement programmable (62,5 μs ou 250 μs)
- Régulateur de position intégrée (250 μs)
- Interface de sens d'impulsion intégrée pour le raccordement d'un servomoteur à une commande de moteur pas à pas
- Traitement des signaux du résolveur ou resp. des signaux sinus-cosinus d'un codeur à très haute résolution
- Encoder-Emulation (émulation codeur) (incrémentelle compatible ROD 426 / SSI)

Fonctions "confort"

- 2 sorties moniteur analogiques
- 4 entrées numériques programmables (deux sont définies en standard en tant qu'entrées capteur fin de course)
- 2 sorties numériques programmables
- Combinaisons librement programmables de tous les messages numériques

Options

- Carte d'expansion I/O-14/08, ⇒ p. 99
- Carte d'expansion PROFIBUS DP, ⇒ p. 102
- Carte d'expansion SERCOS, ⇒ p. 103
- Carte d'expansion DeviceNet, ⇒ p. 105
- Carte d'expansion EtherCAT, ⇒ p. 108
- Carte d'expansion SynqNet, ⇒ p. 109
- Module d'expansion -2CAN-, connecteurs distincts pour CAN et RS232,

 p. 111
- Cartes d'expansion de fournisseurs tiers (ModBus, FireWire, LightBus etc.
 s'adresser au fabricant pour plus d'informations)

6.2 Données techniques

Données nominales	DIM	SERVOSTAR 640	SERVOSTAR 670
Tension de raccordement nominale (L1,L2,L3)		3 x 230V-10%	480V+10%, 50 Hz
(réseau mis à la terre)		3 x 208V-10%	480V+10%, 60 Hz
Puissance de raccordement nom. pour service S1		30	50
Tension nominale de circuit intermédiaire		290	675
Courant nominal de sortie (valeur efficace, ± 3 %)			
@ 230V		40	85
@ 400V		40	80
@ 480V		40	70
Courant de sortie de crête (max. env. 5 s, ± 3 %)			
@ 230V		80	160
@ 400V		80	160
@ 4800V		80	140
Fréquence d'horloge de l'étage final	kHz		8
Particularités techniques du circuit ballast	_	⇒	p.27
Seuil "HORS" pour surtension	V		900
Facteur de forme du courant de sortie(pour données			
nominales et inductivité de charge minimale)	_	1	,01
Largeur de bande du boucle de courant en cascade	kHz	>	1,2
Chute de tension résiduelle à courant nominal	V		5
Puissance de perte au repos, étage final dévalidé	W	4	40
Puissance de perte à courant nominal (y compris le			
bloc d'alimentation, sans perte de ballast)	W	400	700
Entrées / Sorties			
Valeur de consigne 1/2, résolution 14 /12 bits	V	±10	
Tension en mode commun max.	V		
Résistance d'entrée	kΩ	±10 20	
Resistance d'entree		low 07 / high 1236	
Entrées de commande numériques	MA	7	
	V	max. 30	
Sorties de commande numériques, collecteur ouvert	mA	10	
	V	DC max. 30, AC max 42	
Sortie BTB/RTO, contacts de relais	mA	500	
Alimentation en tension auxiliaire,			
à séparation de potentiel, sans frein	A		ax. 16)
Alim. en tension aux., à séparation de potentiel,	V	,	% +15%)
avec frein (Prenez garde aux chutes de tension!)	A	,	ax. 16)
Courant de sortie min./max. frein	A		75 / 3
Raccordements	_ A	0,1	373
Signaux de commande		Combicon 5 09 /	18-pôles , 2,5mm²
Signaux de puissance			10-poies , 2,311111 1m² – 50 mm²
Entrée résolveur			
Entrée codeur incrémentiel		SubD 9-pôles (connecteur femelle)	
		SubD 15-pôles (connecteur femelle)	
Interface PC, CAN		SubD 9-pôles (connecteur mâle)	
mulation codeur, ROD/SSI — SubD 9-pôles (connecteur r			
•	Contact de protection thermique moteur — min. 15VDC / 5 mA		
Mécanique Daide	1	40.5	04
Poids	kg	19,5	21
Hauteur sans tableau d'écran sans (avec) œillet	mm		(375)
Hauteur avec tableau d'écran sans (avec) œillet			
Largeur	mm	250	
Profondeur sans connecteurs	mm	300	
Profondeur avec connecteurs	mm	325	

6.2.1 Couples de serrage recommendée

Connecteur	Couples de serrage
X3, X4	0,3 Nm
X10	0,3 Nm
X0	6-8 Nm

6.2.2 Protection

Informations supplémentaires: KDN sur le page "Fuses".

Protection interne

Circuit	Protection interne
Tension auxiliaire 24 V	4 A (lent)
Résistance ballast	électronique

Protection externe

Fusibles ou sembl.	SERVOSTAR 640	SERVOSTAR 670
Alimentation CA F _{N1/2/3}	50 A*	80 A*
Résistance ballast F _{B1/2}	16 A**	20 A**

^{*} Types européens : gRL ou gL 400V/500V

6.2.3 Conditions ambiantes, aération, position de montage

Stockage	⇒ p.14	
Transport	⇒ p.14	
Tolérance tensions d'alimentation :		
alimentation en puissance	min 3x230V _{-10%} AC / max 3x 480V ^{+10%} , 50 Hz	
· I I	min 3x208V _{-10%} AC / max 3x 480V ^{+10%} , 60 Hz	
208.480V 230480V		
alimentation en tension auxiliaire	24 V DC (-0% +15%), tenir compte de la perte	
	de tension	
	0+45°C à données nominales	
Température ambiante en service	+45+55°C avec récupération de puissance	
	de 2,5% / K	
Humidité de l'air en service	humidité rel. de l'air 85 %, pas de condensati-	
numante de l'air en service	on admise	
Altitude d'implementation ou decous du	jusqu'à 1000m sans restriction	
Altitude d'implantation au-dessus du niveau de la mer:	1000 2500 m avec récupération de puis-	
niveau de la mer:	sance 1,5 %/100 m	
Degré de pollution	degré de pollution 2 selon EN 60664-1	
Vibrations	classe 3M1 selon IEC 60721-3-3	
Niveau sonore	max. 45 dB(A)	
Type de protection	IP 20 selon EN 60529	
Position de montage	généralement à la verticale ⇒ p.35	
Aération	ventilateur incorporé	
Prévayez une circulation d'air forcée dans	s l'armoire de commande.	

AVIS

Types américains : classes de fusibles RK5, 600VAC 200kA, action retardée

^{**} Types européens : Bussmann HLS, 690V

Types américains: Bussmann FWP-xxA14F, Size 14x51mm, 800Vdc UL listed

6.2.4 Sections des conducteurs

Particularités techniques des câbles de raccordement. ⇒ p.40. Voici ce que nous préconisons, dans le cadre de EN60204, pour les **systèmes à un axe**:

Raccordement CA	25 mm², blindé entre filtre et variateur, 600V, 80°C
Circuit intermédiaire CC	25 mm², blindé avec longueurs plus 20 cm, 600V, 80°C
Câbles moteur	⇒ p.49, pour le section cf. manuel de moteur, max. 50m, capacité <250pF/m, 600V, 80°C
Résolveur, protection thermi-	4x2x0.25 mm² torsadés par paire, blindés, max. 100 m,
que	capacité <120pF/m
Encoder, protection thermique	7x2x0,25 mm² torsadés par paire, blindés, max.50m, capacité <120pF/m
Valeurs de consi., moniteurs, AGND	0.25 mm² torsadés par paire, blindés
Sign. de commande, AS, BTB, DGND	0,5 mm²
Frein d'arrêt (moteur)	min. 1,5 mm², 600V, 80°C, blindés, tenir compte de la perte de tension
+24 V / XGND	max. 2,5 mm², tenir compte de la perte de tension
Résistance ballast	⇒ p.47, min. 10mm², blindés, 1000V, 80°C
Davida a sustance à aloriano	

AVIS

Pour les systèmes à plusieurs axes, veuillez observer les instructions de service spécifiques à votre installation. Longueurs max. autorisées conformément aux exigences de capacité ⇒ p.40.

6.3 Affichage DEL

Un affichage DEL à 3 positions signale, après application de l'alimentation 24V, l'état du variateur (⇒ p. 94). Lors de l'utilisation du variateur via le clavier sur la platine avant, il y a affichage des paramètres et des numéros de fonction (⇒ p.94), ainsi que du numéro du défaut (⇒ p.95).

6.4 Système de masse

AGND — Référence pour entrées/sorties analogiques, masse analogique interne

DGND — Référence pour entrées/sorties numériques, à découplage optique

XGND — Référence pour tension auxiliaire 24 V externe, à découplage optique et inductif

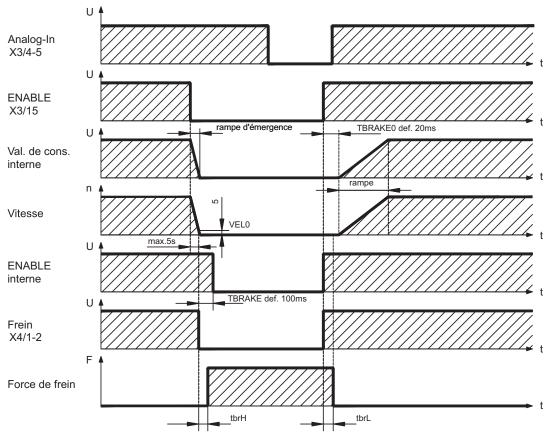
PGND — Référence pour émulation codeur, RS232, CAN, PROFIBUS, à découplage optique

Vous trouverez les séparations de potentiel dans le schéma synoptique (⇒ p.42).

^{*} Kollmorgen Nord Amérique livre jusqu'à 39m longueur à des câbles. Kollmorgen Europe livre jusqu'à longueur max. à des câbles

6.5 Commande d'excitation du frein d'arrêt du moteur

Un frein d'arrêt 24 V / 3A max. dans le moteur peut être directement commandé par excitation par le variateur.


ATTENTION Pas de sécurité fonctionnelle!

Danger en raison du risque de chute de charges suspendues (axes verticaux). La sécurité fonctionnelle requiert un frein mécanique supplémentaire commandé par une commande de sécurité.

AVIS

Le frein ne fonctionne que si la tension d'alimentation est suffisante (⇒ p.24). Faites attention aux chutes de tension, mesurez la tension à l'entrée du frein et vérifiez le fonctionnement du frein (débloquer et freiner).

Valider la fonction "freinage" via le paramètre FREIN : Réglage AVEC. Le diagramme ci-dessous montre le rapport aussi bien temporel que fonctionnel entre le signal ENABLE, la valeur de consigne de vitesse, la vitesse et la force de freinage.

Pendant de la temporisation ENABLE interne de 100 ms (DECDIS), la valeur de consigne de vitesse du variateur est amenée, en mode interne, avec une rampe de 10 ms à 0. Lorsqu'on atteint 5tours/min ou au plus tard après 5s (EMRGTO), la sortie de frein est connectée.

Les temps de montée (f_{brH}) et de retombée (f_{brL}) du frein d'arrêt placé dans le moteur diffèrent en fonction de chaque type de moteur (cf. le manuel du moteur).

Vous trouverez une description de l'interface à la page 49.

6.6 Circuit ballast

Pendant la freinage à l'aide du moteur, de l'énergie est renvayée au variateur. Cette énergie est transformée en chaleur dans la résistance ballast. La résistance ballast est mise en circuit par le circuit ballast qui est adapté à la tension secteur à l'aide du logiciel setup (seuils de commutation). Notre département applications est à votre disposition pour la calcul de la puissance ballast requise pour votre application. Une méthode simple est décrite dans le "KDN". Vous trouverez une description de l'interface à la page 47.

Description fonctionnelle:

1.- Amplificateur individuel, **non couplé** via le circuit intermédiaire (DC+, DC-)

Le circuit s'i active en présence d'une tension de circuit intermédiaire de 400 V, de 720 V ou resp. de 840 V (en fonction de la tension secteur).

Si la puissance retournée par le moteur est supérieure à la puissance ballast réglée en ce qui conceine la moyenne temporelle ou la valeur maximale, le variateur signale le dépassement de la "puissance ballast" et le circuit ballast s'inactive.

Au cours du contrôle interne suivant de la tension du circuit intermédiaire (au bout de quelques ms), une surtension est décelée et le variateur est inactivé avec délivrance du message de défaut "Surtension" (⇒ p.95).

Le contact prêt a fonctionner (BTB, bornes X3/2,3) est simultanément ouvert (⇒ p.68)

2.- Plusieurs variateurs couplés via le circuit intermédiaire (DC+, DC-)

Grâce au circuit ballast intégré à caractéristique w brevetée, il est possible d'exploiter sur un circuit intermédiaire commun, sans mesures supplémentaires, plusieurs variateurs, même lorsqu'ils présentent des intensités de courant différentes.

Ceci est assuré par une autoadaptation des seuils de ballast différents (avec tolérances). L'énergie ballast est répartie uniformément sur tous les variateurs. Les puissances cumulées de tous les variateurs sont disponibles aussi bien pour la puissance de crête que pour la puissance continue. L'inactivation en cas de surtension a lieu, comme décrit sous le point 1., pour le variateur qui présente, du fait des tolérances, le seuil "HORS" le plus bas. Le contact prêt a fonctionner de ce variateur (BTB, bornes X3/2,3) est simultanément ouvert (⇒ p.68).

Particularités techniques du circuit ballast			SERVOSTAR	
Tension secteur	Données nominales	DIM	640	670
	Résistance ballast externe	Ohm	15	10
	Seuil "EN" supérieur	V	400 -	- 430
3 x 230 V	Seuil "HORS"	V	380 - 410	
3 X 230 V	Surtension F02	V	450	
	Puissance continue (R _{Bext}) max.		6	
	Puissance impulsionnelle (R _{Bext} max. 1s)	kW	10	16
	Résistance ballast externe	Ohm	15	10
	Seuil "EN" supérieur	V	720 -	- 750
3 x 400 V	Seuil "HORS"	V	680 -	- 710
3 X 400 V	Surtension F02	V	80	00
	Puissance continue (R _{Bext}) max.	kW	6	
	Puissance impulsionnelle (R _{Bext} max. 1s)	kW	35	50
	Résistance ballast externe	Ohm	15	10
	Seuil "EN" supérieur		840 - 870	
3 x 480 V	, Seuil "HORS"		800 - 830	
3 X 460 V	Surtension F02		900	
	Puissance continue (R _{Bext}) max.	kW	6	
	Puissance impulsionnelle (R _{Bext} max. 1s)	kW	45	70

INFORMATION Vous trouverez des résistances de frein adaptées dans notre manuel des accessoires.

6.7 Mise en marche er arrêt

Ce chapitre décrit le comportement du SERVOSTAR lors de l'activation/la désactivation et les mesures nécessaires pour atteindre un comportement conforme aux normes lors de l'arrêt opérationnel ou de l'arrêt d'urgence.

INFORMATION

L'alimentation 24 V du variateur doit être conservée. Les commandes ASCII <u>ACTFAULT</u> (réaction à une erreur, dépend également de l'erreur concernée, voir également <u>ERRCODE</u>) et <u>STOPMODE</u> (réaction au signal Enable) permettent de déterminer le mode de comportement de l'entraînement.

STOPMODE	ACTFAULT	Comportement (voir aussi référence ASCII dans online help du logiciel de mise en service)
0 (default)	0	Le moteur s'arrête en roue libre de manière déréglée
1	1 (default)	Le moteur est freiné de manière contrôlée

Comportement en cas de panne de secteur

Les variateurs reconnaissent la panne d'une ou de plusieurs phases secteur (alimentation de puissance) via un circuit intégré.

Le logiciel de mise en service permet de régler le comportement du variateur : dans le masque d'écran **Réglages de base**, choisissez sous « **Phase secteur manquante**» (PMODE) :

- Avertissement, lorsque la commande maître doit arrêter l'entraînement : L'absence d'une phase secteur est signalée sous la forme d'un avertissement (n05) et le courant moteur est limité. Le variateur n'est pas mis hors fonction. La commande maître peut maintenant mettre fin au cycle actuel de manière ciblée ou amorcer l'arrêt de l'entraînement. Le message d'erreur « NETZ-BTB, F16 » est généré par exemple sur une sortie numérique du variateur et il est analysé par la commande.
- Message d'erreur, lorsque le variateur doit arrêter l'entraînement : L'absence d'une phase secteur est signalée sous la forme d'une erreur (F19). Le variateur est mis hors fonction, le contact BTB ouvert. Si le réglage d'usine reste inchangé (ACT-FAULT=1), le moteur est freiné avec le réglage « RAMPE DE SECOURS ».

Comportement lorsque le seuil de sous-tension est atteint

En cas de sous-dépassement du seuil de sous-tension (la valeur est dépendante du type de variateur) dans le circuit intermédiaire, le message d'erreur « Sous-Tension, F05 » s'affiche.

La réaction de l'entraînement dépend du réglage ACTFAULT/STOPMODE.

Comportement lorsque la fonction « Frein d'arrêt » est activée

Les variateurs dont la fonction « Frein d'arrêt » est activée disposent d'une séquence séparée pour la déconnexion de l'étage de sortie (p. 26). La disparition du signal Enable déclenche un freinage électrique. En général, pour le sous-groupe interne « Frein d'arrêt » comme pour l'ensemble des commutateurs électroniques, il convient de prendre en considération un éventuel dysfonctionnement. Pour arrêter un moteur équipé d'un frein d'arrêt tout en veillant à la sécurité du personnel, un contacteur électromécanique pour le dispositif de freinage et un dispositif de démagnétisation pour le frein sont également requis.

Comportement du verrouillage de redémarrage -AS-

Le système de verrouillage du redémarrage -AS- suivant la norme EN 954-1 permet de mettre hors tension le variateur SERVOSTAR 640/670 après l'arrêt de l'entraînement via un circuit électronique interne de ce dernier avec une alimentation de puissance installée, de manière à protéger l'arbre d'entraînement contre tout démarrage accidentel. L'utilisation du système de verrouillage de redémarrage -AS- est décrite au chapitre relatif à ce système à partir de la p. 71.

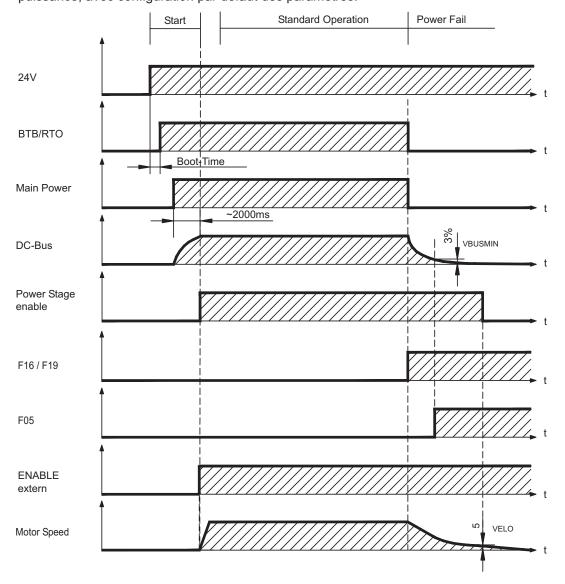
6.7.1 Comportement en mode normal

Le comportement du variateur dépend toujours des différents paramètres du réglage actuel (par ex. ACTFAULT, VBUSMIN, VELO, STOPMODE, etc., voir <u>online help</u>). Le diagramme ci-dessous représente l'ordre correct logique de mise en marche et d'arrêt du variateur.

Les appareils avec sélection de la fonction «frein» disposent d'un déroulement séparé pour la mise hors service de l'étage final (⇒ p.26).

6.7.2 Comportement en cas d'erreur (configuration par défaut)

Le comportement du variateur dépend toujours des différents paramètres du réglage actuel (par ex. ACTFAULT, VBUSMIN, VELO, STOPMODE, etc., voir <u>online help</u>).



ATTENTION Mouvement incontrôlé!

Certaines erreurs (voir <u>ERRCODE</u>) forcer la désactivation immédiate du pouvoir, quel que soit le réglage ACTFAULT.

Risque de blessure par cabotage incontrôlé de l'entraînement. Pour la sécurité fonctionnelle d'un frein supplémentaire, coffre-fort contrôlé mécanique doit être utilisé.

Le graphique présente la séquence de mise en service et la séquence de la commande interne du variateur en cas de panne d'une ou de plusieurs phases de l'alimentation de puissance, avec configuration par défaut des paramètres.

(F16 / F19 = messages d'erreur BTB secteur / Phase secteur, F05 = message d'erreur Sous-tension)

Si le réglage d'usine reste inchangé (ACTFAULT=1), le moteur est immédiatement freiné par la rampe du frein de secours dès l'identification de l'erreur de phase secteur, même lorsque aucune commande externe n'intervient (par exemple lorsque le signal Enable reste actif).

6.8 Fonction d'arrêt/d'arrêt d'urgence selon la norme EN 60204

INFORMATION

Le verrouillage de redémarrage –AS- (voir page 71 et suivantes) permet, après l'arrêt de l'entraînement, de le désactiver via une électronique interne (sans couple), l'alimentation en énergie étant appliquée. De cette manière, l'arbre de transmission est protégé contre tout démarrage involontaire susceptible de présenter un risque pour le personnel.

INFORMATION

La mise en œuvre des catégories d'arrêt exige que les paramètres « STOPMODE » et « ACTFAULT » soient réglés sur 1. Le cas échéant, modifiez les paramètres via la fenêtre de terminal du logiciel de mise en service et enregistrez les données dans l'EEPROM.

Des exemples pour l'exécution peuvent être trouvés dans le KDN à la page <u>Stop and Emergency Stop Function</u>.

6.8.1 **Arrêt**

La fonction d'arrêt permet d'arrêter la machine en mode normal. Les fonctions d'arrêt sont définies par la norme EN 60204.

Catégorie 0 : arrêt par déconnexion immédiate de l'alimentation en énergie des entraînements des machines (c'est-à-dire arrêt non commandé).

Catégorie 1 : arrêt commandé au cours duquel l'alimentation en énergie des entraînements des machines est conservée pour obtenir l'arrêt et n'est interrompue qu'une fois l'arrêt effectif.

Catégorie 2 : arrêt commandé dans lequel l'alimentation en énergie des entraînements des machines est conservée.

La catégorie d'arrêt doit être définie en tenant compte de l'évaluation du risque de la machine. En outre, il convient de prévoir les mesures adéquates pour garantir un arrêt fiable.

Les arrêts de catégorie 0 et 1 doivent être opérationnels indépendamment du type de fonctionnement et tout arrêt de catégorie 0 doit être prioritaire. Les fonctions d'arrêt doivent être réalisées par déconnexion des circuits correspondants et elles sont prioritaires sur les fonctions de démarrage affectées.

Si nécessaire, il convient de prévoir des possibilités pour raccorder des dispositifs de protection et de verrouillage. En cas de besoin, la fonction d'arrêt doit indiquer son état à la logique de commande. La réinitialisation de la fonction d'arrêt ne doit présenter aucun risque.

Des exemples pour l'exécution peuvent être trouvés dans le KDN à la page <u>Stop and Emergency Stop Function</u>.

6.8.2 Arrêt d'urgence

La fonction d'arrêt d'urgence permet d'arrêter le plus rapidement possible la machine en cas de danger. La fonction d'arrêt d'urgence est définie par la norme EN 60204. Les principes de l'équipement de halte d'urgence et les aspects fonctionnels figurent dans ISO 13850.

La fonction d'arrêt d'urgence peut être déclenchée par les actions manuelles d'une seule personne, par exemple par un bouton-poussoir normalement ouvert (bouton rouge sur fond jaune). Elle doit être entièrement fonctionnelle et disponible à tout moment.

L'utilisateur doit comprendre immédiatement comment utiliser ce mécanisme (sans consulter de références ou d'instructions).

INFORMATION

La catégorie d'arrêt pour l'arrêt d'urgence doit pour être déterminée par une évaluation des risques de la machine.

Parallèlement aux exigences relatives à l'arrêt, il convient de respecter les exigences suivantes en cas d'arrêt d'urgence :

- L'arrêt d'urgence doit être prioritaire sur toutes les autres fonctions et commandes dans l'ensemble des positions de fonctionnement.
- L'alimentation en énergie des entraînements des machines, pouvant être à l'origine de conditions dangereuses, doit être mise hors fonction le plus rapidement possible sans provoquer d'autre danger (par ex. à l'aide de dispositifs d'arrêt mécaniques ne nécessitant pas d'alimentation externe en énergie, de freins à contre-courant pour la catégorie d'arrêt 1).
- La réinitialisation ne doit pas entraîner de redémarrage.

Des exemples pour l'exécution peuvent être trouvés dans le KDN à la page <u>Stop and Emergency Stop Function</u>.

6.8.3 Coupure d'Urgence

La fonction coupure d'urgence est utilisée pour couper l'alimentation électrique de la machine afin d'éviter toute mise en danger par de l'énergie électrique (par exemple une électrocution).

Les aspects fonctionnels de l'arrêt d'urgence figurent dans IEC 60364-5-53.

Le coupure d'urgence est déclenché par une manipulation humaine unique, par exemple par un bouton-poussoir normalement ouvert (bouton rouge sur fond jaune).

INFORMATION

Les résultats d'une évaluation des risques de la machine déterminent si un coupure d'urgence est nécessaire.

Le coupure d'urgence est réalisé au moyen de la coupure d'alimentation électrique par des appareils de coupure électromécaniques. Cela aboutit à un arrêt de catégorie 0. Si cette catégorie d'arrêt n'est pas permise pour la machine, le coupure d'urgence doit être remplacé par d'autres mesures (par exemple protection contre un contact direct).

6.9 Protection contre les contacts

6.9.1 Courant de fuite

Le courant de fuite passant par le conducteur de protection PE est composé de la somme des courants de fuite des appareils et des câbles. La réponse en fréquence du courant de fuite est constituée d'un grand nombre de fréquences. Les interrupteurs différentiels évaluent principalement le courant à 50 Hz. Les mesures du courant de fuite avec un multimètre standard ne sont donc pas possibles. Avec nos câbles à faible capacité, est admise comme règle empirique, pour une tension de réseau de 400 V dépendante de la fréquence d'horloge de l'étage final du courant de fuite:

 I_{abl} = n x 20mA + L x 1mA/m avec une fréquence d'horloge de l'étage final de 8 kHz I_{abl} = n x 20mA + L x 2mA/m avec une fréquence d'horloge de l'étage final de 16 kHz

(labl désignant le courant de fuite, n le nombre des variateurs, et L la longueur du câble moteur) Pour d'autres tensions de réseau, le courant de fuite est proportionnel à la tension.

Exemple: 2 variateurs + 25m de câble moteur pour une fréquence d'horloge de 8kHz:

2 x 20mA + 25m x 1mA/m = 65mA de courant de fuite.

INFORMATION

Le courant de fuite contre le PE s'élevant à plus de 3,5 mA, la connexion au PE doit, conformément à la norme EN 61800-5-1, soit être effectuée en double, soit en utilisant un câble de raccordement >10 mm² de diamètre.

Il est possible de diminuer les courants de fuite grâce aux mesures suivantes :

- Réduction de la longueur du câble moteur
- Utilisation de câbles avec des capacités moins élevées (voir page 40)

6.9.2 Interrupteur différentiel (FI)

Selon les normes DIN IEC 60364-4-41 relative à la détermination de la structure et EN 60204 relative à l'équipement électrique de machines, l'utilisation d'interrupteurs différentiels (définis par FI dans ce qui suit) est possible si les dispositions nécessaires sont respectées. Dans le cas du SERVOSTAR 640/670, il s'agit d'un système triphasé avec un pont B6. C'est pourquoi des FI sensibles à tous les courants sont utilisés, afin de pouvoir détecter de la même manière les courants différentiels. En ce qui concerne la règle empirique pour la détermination du courant de fuite, voir chap. 6.9.1.

Mesure des courants différentiels résiduels pour le FI

	Protection contre les «contacts indirects» pour des équipements électriques fixes ou mobiles et également contre les «contacts directs».
	Protection contre les «contacts indirects» pour des équipements électriques fixes

INFORMATION

Pour une protection contre les contacts directs, nous recommandons de sécuriser chaque variateur séparément à l'aide d'un interrupteur différentiel de 30 mA sensible à tous les courants (avec une longueur de câble moteur < 5m).

L'utilisation d'un interrupteur FI sélectif empêche le déclenchement intempestif des dispositifs de protection grâce à une évaluation plus intelligente.

6.9.3 Transformateurs de séparation de sécurité

Si une protection contre les contacts indirects est impérativement nécessaire malgré un courant de fuite élevé ou si vous cherchez une protection alternative contre les contacts, vous pouvez également utiliser un transformateur de séparation de sécurité.

Un contrôleur d'isolation peut être utilisé pour prévenir tout court-circuit.

INFORMATION

Nous recommandons un câblage aussi court que possible entre le transformateur et le variateur.

7 Installation mécanique

7.1 Remarques Importantes

ATTENTION Courant de fuite élevé!

Il existe un risque de choc électrique avec des niveaux CEM élevés pouvant entraîner des blessures si une mise à la terre CEM appropriée n'a pas été effectuée pour le variateur (ou moteur).

- N'utilisez pas de plaques de fixation recouvertes de peinture (c-à-d non-conductrices).
- Dans les cas défavorables, utilisez une bande de tissu de cuivre entre les boulons de mise à la terre et le potentiel de terre pour dériver le courant.

AVIS

Protégez les variateurs contre les surcharges excessives. Lors du transport et de la manutention en particulier, aucun composant ne doit être tordu et/ou aucune distance d'issolation modifiée. Ne touchez pas les composants électroniques et les contacts.

AVIS

Le variateur s'éteint de lui-même en cas de surchauffe. Assurez dans l'armoire électrique une arrivée d'air de refroidissement suffisante et filtrée venant du bas ou utilisez un échangeur thermique. Respectez à ce suiet les instructions de la page 24.

AVIS

Ne montez aucun composant produisant un champ magnétique directement à côté du variateur. Les champs magnétiques puissants peuvent avoir une influence sur les composants internes. Montez les appareils produisant un champ magnétique à distance du variateur et/ou blindez les champs magnétiques.

7.2 Guide d'installation mécanique

Les indications suivantes ont pour but de vous aider à effectuer à l'installation dans une suite logique, sans omettre quelque chose d'important.

Lieu de montage Dans une armoire de commande fermée. Cf. page 24 . Le lieu de mont. doit être exempt de substances conductrices et agressives. Situation de montage : cf. page 35

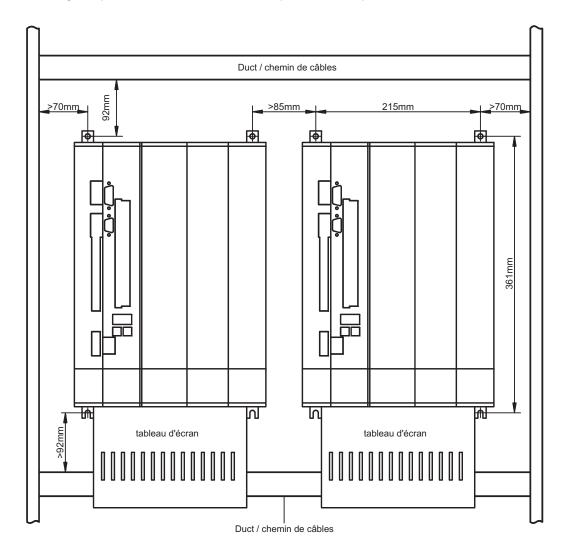
Aération

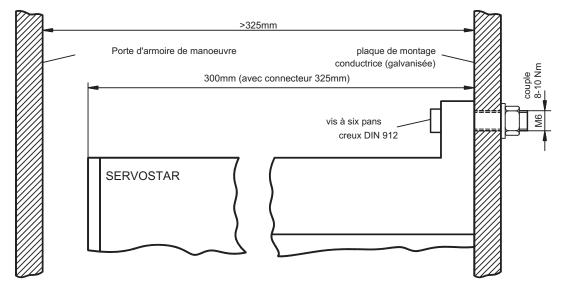
Assurer une aération sans entrave des variateurs et observer la température ambiante admissible \Rightarrow p.24 .

Prévoir que les espaces de libre nécessaires au-dessus et en dessous des variateurs ⇒ p.35.

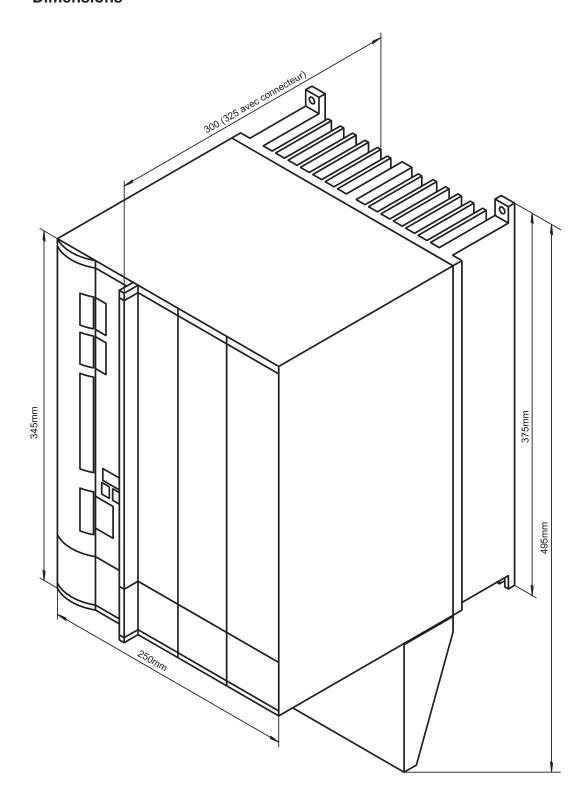
Montage

Montez les variateurs, le bloc d'alimentation secteur, filtre et bobine près l'un de l'autre sur la plaque de montage conductrice **mise à la terre** dans l'armoire de commande.


Mise à la terre blindage


Blindage et mise à la terre conformes à la CEM (⇒ p.44)
Mettre à la terre la plaque de montage, le carter du moteur et la
CNC-GND de l'automate programmable. Tous les indications concernant la technique de raccordement ⇒ p.40

7.3 Montage


Des indications à l'assemblage de passage vous reçoivent de notre département d'application.

Matériel de montage : 4 vis à tête cylindrique à six pans creux EN 4762, M6 Outillage requis : 4 vis à tête cylindrique à six pans creux EN 4762, M6 clé mâle coudée pour vis à six pans creux de 5 mm

7.4 Dimensions

8 Installation électrique

8.1 Remarques Importantes

▲ DANGER Haute tension jusqu'à 900V!

Il ya un risque de blessures graves ou la mort par choc électrique et de formation d'arc électrique. Des tensions dangereuses peuvent persister dans les condensateurs jusqu'à 5 minutes après la mise hors tension. Les raccordements de commande et d'alimentation peuvent encore être sous tension, même si le moteur ne tourne pas.

- Vous ne devez procéder à l'installation et au câblage de l'appareil que lorsque celui-ci est hors tension.
- Veillez à ce que l'armoire soit déconnectée en toute sécurité (avec un système de verrouillage, des panneaux d'avertissement, etc.).
- Ne débranchez jamais les connexions électriques du variateur pendant qu'il est sous tension.
- Une fois le variateur déconnecté de l'alimentation principale, attendez au moins 5 minutes avant de toucher des sections de l'équipement susceptibles d'être conductrices ou de débrancher les connexions.
- Pour plus de sécurité, mesurez la tension dans la liaison de bus CC et attendez qu'elle soit inférieure à 50 V.

AVIS

Une tension trop élevée à ces raccordements peut amener à des destructions au niveau du circuit ballast et de le variateur. Vérifiez l'affectation de le variateur et du moteur. Comparez les tensions nominales définies et les courants nominaux des appareils. Effectuez le câblage conformément aux indications données à la page 39. Assurez-vous que la tension nominale maximale admissible aux raccordements L1, L2, L3 ou +DC, -DC ne soit pas dépassée de plus de 10 %, même dans le cas le plus défavorable (voir EN 60204-1).

AVIS

L'utilisation des bobines de choc et filtres de réseau externes est nécessaire. La protection de l'alimentation côté CA et de l'alimentation 24 V doit être réalisée par l'utilisateur (⇒ p.24).

AVIS

Bouclez le contact prêt à fonctionner (BTB/RTO) ans le circuit d'arrêt d'urgence de l'installation. Ce n'est qu'ainsi que vous sécuriserez la surveillance de le variateur.

INFORMATION

Des modifications du réglage des variateurs au moyen du logiciel setup sont autorisées. Toute autre intervention non autorisée entraîne automatiquement la perte des droits de garantie.

8.2 Guide d'installation électrique

AVIS

Posez séparément les câbles de puissance et de commande. Nous recommandons une distance supérieure à 20 cm. L'immunité au bruit exigée par la loi sur la compatibilité électromagnétique en sera améliorée. Si vous utilisez un câble de puissance moteur avec des fils de commande du frein intégrés, les fils de commande du frein doivent être blindés séparément. Posez le blindage des deux côtés et sur une large surface (basse impédance), autant que possible au-dessus de boîtiers de connecteurs ou de pinces de blindage métallisées. Vous trouverez des remarques sur la technique de raccordement à la page 40.

AVIS

Les câbles de retour ne doivent pas être rallongés, car cela interromprait le blindage et perturberait l'analyse du signal. Les câbles entre le variateur et la résistance de freinage externe doivent être blindés. Tous les câbles de courant fort doivent avoir une section suffisante selon EN 60204 (⇔ p.25) et des câbles de la même qualité que celle exigée p.40 doivent être utilisés pour atteindre la longueur de câble maximale.

Les indications suivantes ont pour but de vous aider à effectuer à l'installation dans une suite logique, sans omettre quelque chose d'important.

Sélection de câble

Sélectionnez les câbles selon la norme EN 60204 ⇒ p.25)

Mise à la terre blindage

Blindage et mise à la terre conformes à la CEM (⇒ p.44)
Mettre à la terre la plaque de montage, le carter du moteur et la
CNC-GND de l'automate programmable. Tous les indications concernant la technique de raccordement ⇒ p.40

Câblage

- Poser séparément le câble de puissance et de commande
- Boucler le contact BTB/RTO dans le circuit d'arrêt d'urgence de l'installation
- Raccorder les entrées de commande numériques du variateur
- Raccorder l'AGND
- Si nécessaire, raccorder la valeur de consigne analogique
- Raccorder l'unité de rétroaction (résolveur ou resp. codeur)
- Si nécessaire, raccorder l'émulation codeur (Encoder-Emulation)
- Raccorder la carte d'expansion (voir instructions correspondantes à partir de la page 98)
- Raccorder les câbles moteur, posez les blindages des deux côtés
- Raccorder le frein d'arrêt, posez le blindage des deux côtés
- Raccorder une résistance ballast externe (avec protection)
- Raccorder la tension auxiliaire (valeurs de tension maximales admissibles ⇒ p.24)
- Raccorder le bobine de choc de réseau et le filtre de réseau, utiliser conduite blindé entre filtre de réseau et variateur
- Raccorder la tension de puissance (valeurs de tension maximales admissibles ⇒ p.24)
- Raccorder le PC (⇒ p.69).

Vérification

 Vérification finale du câblage réalisé sur la base des schémas de raccordement utilisés

8.3 Câblage

Un exemple de procédure d'installation est donné. Toutefois, il s'avérera judicieux ou nécessaire de procéder autrement, selon l'application des appareils.

Nous proposons des stages et **cours de formation** pours perfectionner vos connaissances (sur demande).

▲ DANGER Haute tension jusqu'à 900V!

Il existe un risque de formation d'arc électrique pouvant entraîner des blessures graves.

- Vous ne devez procéder à l'installation et au câblage de l'appareil que lorsque celui-ci est hors tension, c'est-à-dire lorsque ni l'alimentation électrique, ni l'alimentation auxiliaire de 24 V, ni la tension d'alimentation de tout autre appareil connecté n'est sous tension.
- Veillez à ce que l'armoire soit déconnectée en toute sécurité (avec un système de verrouillage, des panneaux d'avertissement, etc.)

INFORMATION

Le symbole de masse ritin que vous trouverez dans tous les schémas de raccordement, signifie il faut assurer une connexion liaison conductrice sur une surface la plus grande possible entre l'appareil signalé et la plaque de montage dans votre armoire de commande. Cette connexion doit pouvoir assurer la dérivation de parasites HF et il ne faut pas la confondre avec le symbole de terre PE = (mesure de sécurité selon EN 60204).

INFORMATION

Servez-vous des schémas de raccordement suivants :

Aperçu : page 44
Raccordements de puissance : page 46
Moteur : page 49
Feedback: : page 50ff

Arbre électrique / Master-Slave:

Interface Master-slave : page 58
Interface sens/impulsion : page 61

Émulations codeur:

ROD (A quad B) : page 56
SSI : page 64
Entrées/Sorties digitales et analogiques : page 65ff
Interface RS232 / PC : page 69
Interface CAN : page 70
Verrouillage de redémarrage -AS- : page 74
Systèmes à plusieurs axes (exemple) : page 92

Cartes d'expansion:

 I/O-14/08
 : page 101

 PROFIBUS
 : page 102

 SERCOS
 : page 104

 DeviceNet
 : page 105

 EtherCAT
 : page 108

 SynqNet
 : page 109

 -2CAN : page 112

8.3.1 Données techniques des câbles de raccordement

Pour plus amples informations concernant les propriétés chimiques, mécaniques et électriques des lignes et des câbles, contacter notre Département Applications (Service après-vente).

INFORMATION

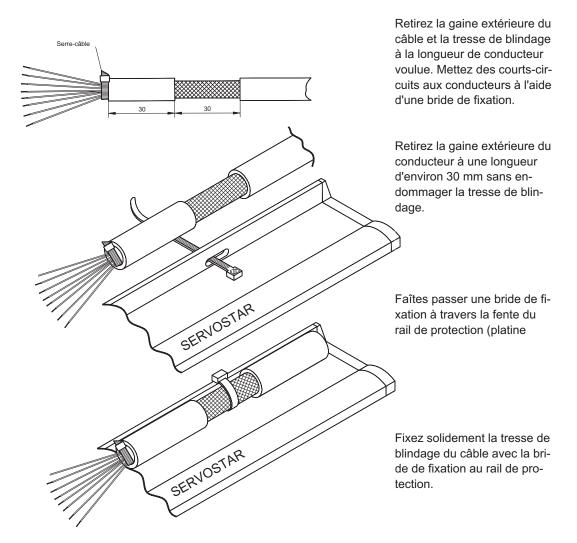
Respecter les instructions du chapitre "Section des conducteurs", page 25. Pour faire fonctionner en toute sécurité le variateur avec la longueur de câble maximale autorisée, vous devez utiliser des câbles satisfaisant notamment aux exigences de capacité.

Matériau d'isolation

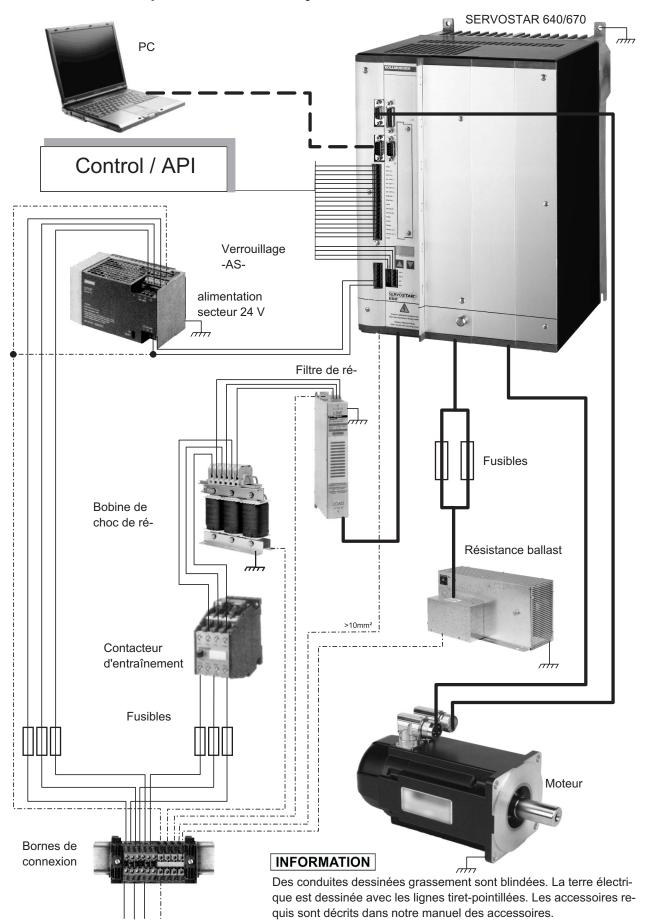
Gaine PUR (polyuréthanne, indicatif 11Y) PETP (polyesteraphtalate, indicatif 12Y) Isolation des conducteurs

Capacité

Câble moteur < 4mm²: inférieure à 150 pF/m ≥ 4mm²: inférieure à 250 pF/m

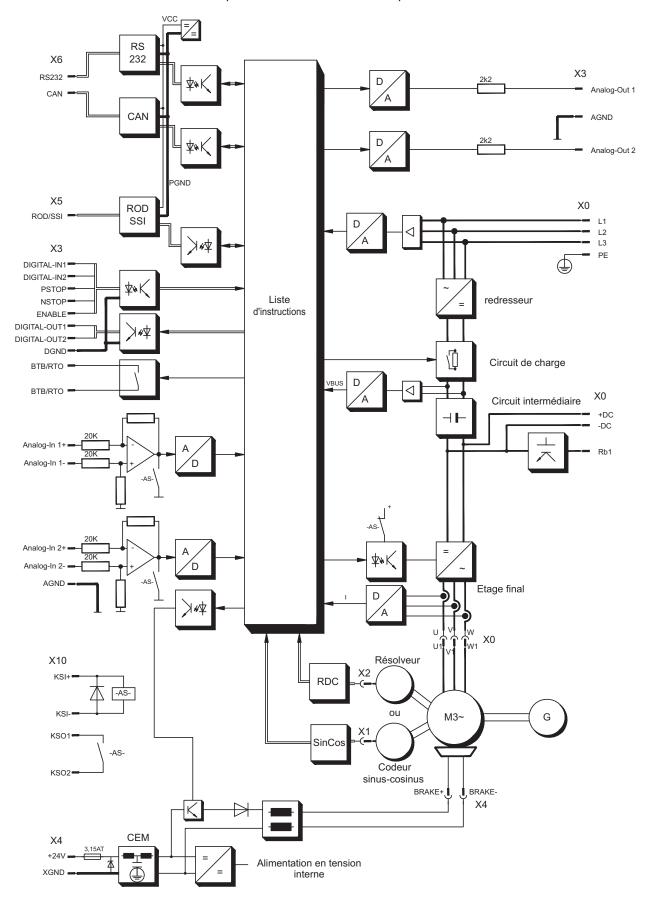

Câble rétroaction

inférieure à 120 pF/m

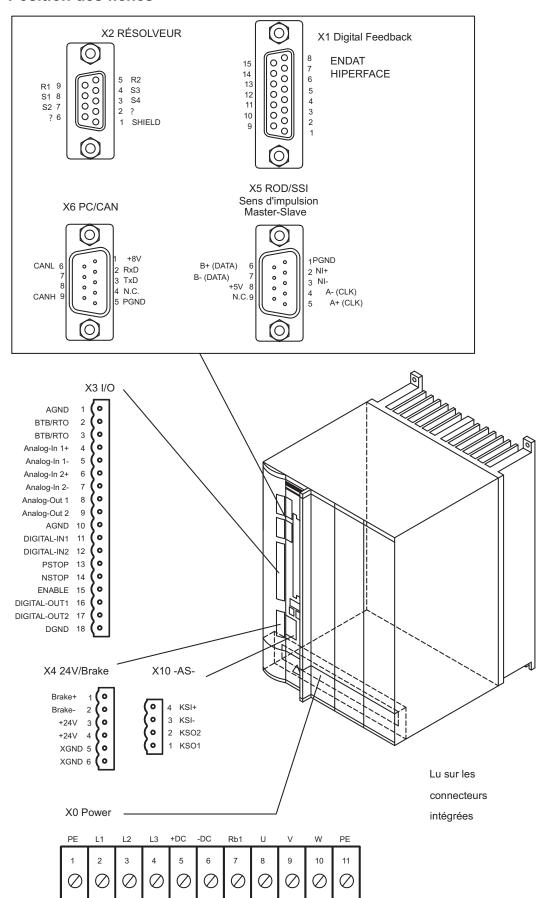

Particularités techniques

Vous trouverez une description détaillée des types et de la confection des câbles dans le manuel des accessoires.

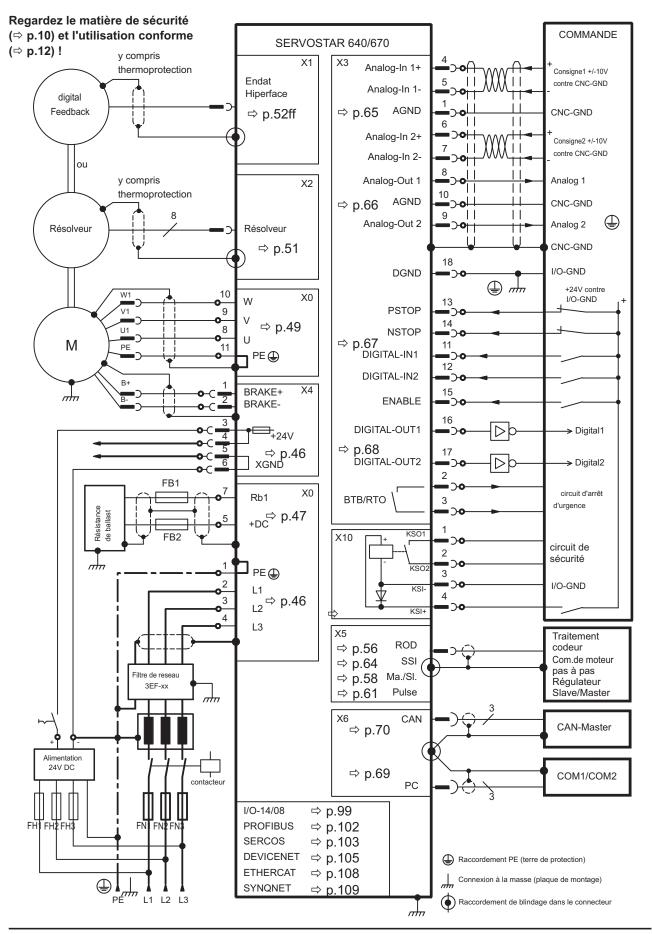
8.3.2 Raccord de protection sur la platine avant



8.4 Composants d'un servosystème

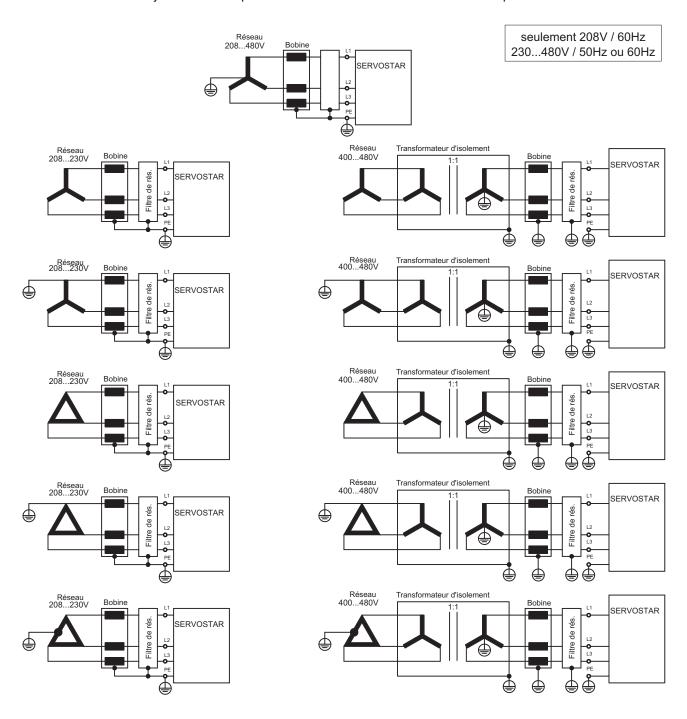


8.5 Schéma bloc


Le schéma bloc représenté ci-dessous ne sert que de vue d'ensemble.

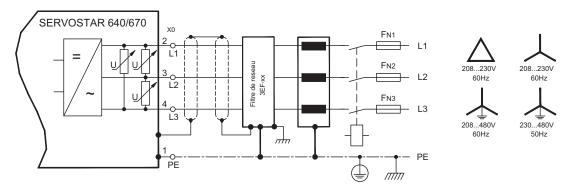
8.6 Position des fiches

8.7 Schéma de raccordement (aperçu)


8.8 Alimentation en tension

8.8.1 Raccordement aux réseau diverts

Cette page indique les différentes variantes de branchement pour tous les réseaux d'alimentation possibles.


AVIS

Sur des réseaux asymétriques de 400...480V avec ou sans terre, le variateur doit être toujours alimenté par l'intermédiaire d'un transformateur de séparation.

8.8.2 Raccordement secteur (X0)

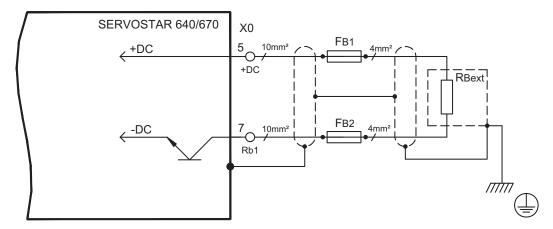
- Directement sur le réseau 3~ mis à la terre
- protection (p. ex. fusible) réalisée par l'utilisateur ⇒ p.24

8.8.3 Tension auxiliaire 24V (X4)

- Séparation de potentiel, bloc d'alimentation externe 24 V CC, p. ex. avec transformateur d'isolement
- Intensité de courant requise ⇒ p.23
- Filtre de déparasitage intégré pour l'alimentation en tension auxiliaire 24 V

8.9 Circuit intermédiaire (X0)

Commutable en parallèle grâce à un circuit breveté de répartition de la puissance ballast sur tous les variateurs raccordés au même bus CC (circuit intermédiaire, exemple de raccordement ⇒ p.92).


AVIS

- Seuls les variateurs avec une alimentation en tension sur le même réseau (tension d'alimentation et de puissance identiques) peuvent être reliés au circuit intermédiaire.
- La somme des courants nominaux de l'ensemble des variateurs connectés en parallèle à un SERVOSTAR 640/670 ne doit pas dépasser 300 A.
- Utilisez des câbles non blindés (>=10mm²) d'une longueur max. de 500 mm. Pour des longueurs plus importantes, utilisez des câbles blindés.

8.9.1 Résistance ballast externe (X0)

Protection et la résistance de ballast par l'utilisateur.

8.9.2 Modules Condensateur KCM

Les modules **KCM** (KOLLMORGEN Capacitor Module) absorbent l'énergie cinétique produite par le moteur en mode générateur. Normalement, cette énergie est transformée en puissance dissipée via les résistances de freinage. Les modules KCM réinjectent l'énergie stockée dans le circuit intermédiaire dès que c'est nécessaire.

Dimensions (H x I x P): 300x100x201 mm

KCM-S	Sauvegarde l'énergie : l'énergie stockée dans le module condensateur pendant le freinage en mode générateur est disponible pour l'accélération suivante. La tension de coupure du module est établie automatiquement pendant les premiers cycles de charge.
KCM-P	Puissance même en cas de panne de courant : en cas de panne de l'alimentation de puissance, le module fournit au variateur l'énergie stockée pour une mise à l'arrêt pilotée de l'entraînement (seule l'alimentation de puissance 24 V est à tamponner séparément).
KCM-E	Extension du module pour les deux types d'utilisation Des modules d'extension sont disponibles en deux classes de capacité.

Les modules KCM ne doivent être raccordés qu'à des variateurs S601...S640 à tension nominale de 400/480 V; des informations concernant le montage, l'installation et la mise en service sont disponibles dans les instructions de service des modules KCM.

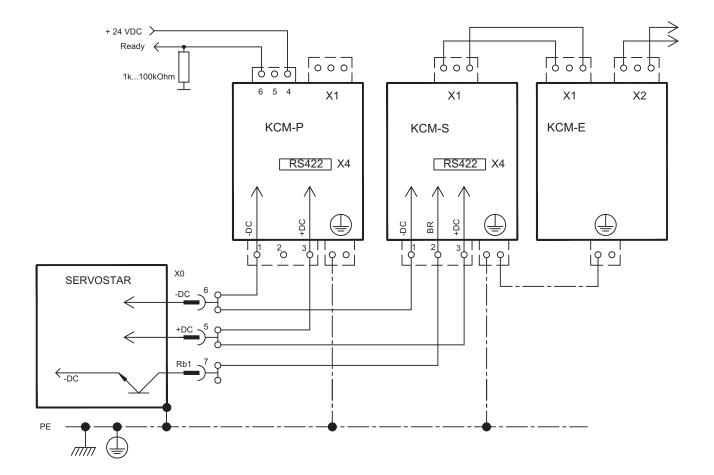
Caractéristiques techniques

	Capacité de sto- ckage	Tension nomin. d'aliment.	Tension d'aliment. de crête	Puis- sance	Classe de pro- tection	Tension de coupure	Poids
Туре	[Ws]	[V DC]	[V DC]	[kW]		[V DC]	[kg]
KCM-S200	1600		max.			déterminée	6,9
KCM-P200	2000	max.	950 VDC	40	IIDOO	470 VDC	6,9
KCM-E200	2000	850 VDC	(30s pen-	18	IIP20	-	4,1
KCM-E400	4000		dant 6min)			-	6,2

Exemple de raccordement avec les modules KCM

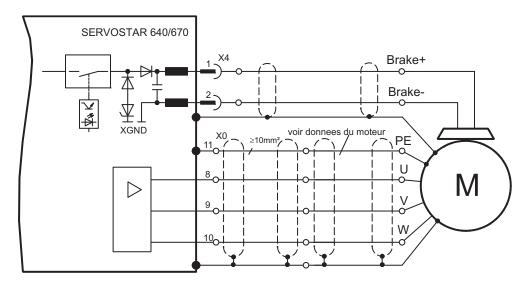
AVIS

Longueur maximale de câble entre variateur et KCM : 500 mm. Les câbles DC+ et DC-doivent systématiquement être torsadés, la section max. admissible est de 6 mm². Respectez la polarité, la permutation de DC +/DC- entraîne la destruction des modules KCM.


A DANGER Haute tension jusqu'à 900V!

Il y a un risque de blessure grave ou mortel par choc électrique ou un arc électrique. Le temps d'autodécharge des modules peut être > 1 heure.

- Coupez la tension secteur. Vous ne pouvez travailler sur les raccordements que si l'installation est hors service.
- Vérifiez l'état de charge à l'aide d'un instrument de mesure adapté à une tension continue maximale de 1 000 V.
- Si vous mesurez une tension supérieure à 50 V entre les bornes DC+/DC- ou à la terre, patientez quelques minutes et recommencez la mesure ou déchargez les modules manuellement conformément aux instructions du mode d'emploi des modules KCM.


KCM-S: Branchez le raccordement BR au système ayant des freinages en mode générateur les plus fréquents dans le système. Valider l' et exécuter le profil de conduite entraînant une activation du hacheur de freinage. Le module KCM-S détermine le seuil de hachage et commence à charger, la LED clignote. L'énergie stockée dans le module condensateur est disponible pour l'accélération suivante.

KCM-P: Le module KCM-P commence la phase de chargement à environ 470 V DC. En cas de panne de l'alimentation de puissance, le module fournit au circuit intermédiaire l'énergie stockée (tamponner séparément l'alimentation auxiliaire 24 V).

8.10 Raccordement moteur avec frein (X0, X4)

Pour sections des câbles cf. manuel de moteurs correspondant.

8.11 Rétroaction

En temps normal, chaque servosystème requiert au moins un dispositif de rétroaction, qui envoie la valeur effective du moteur à la servocommande. Selon le type de dispositif de rétroaction (feedback), le rétrosignal est transmis au variateur de manière numérique ou analogique.

Le SERVOSTAR 640/670 prend en charge tous les types courants de dispositifs de feedback, dont les fonctions doivent être paramétrées de la manière suivante :

FBTYPE (d'écran RETOUR de POSITION), feedback primaire

EXTPOS (d'écran POSITION), feedback secondaire

GEARMODE (d'écran POSITION / ARBRE ÉLECTRIQUE), feedback secondaire dans le logiciel de mise en service. La mise à l'échelle et les autres réglages doivent également y être effectués.

Configuration	Emplace- ment	Paramètres ASCII	Commu- tation	Vitesse	Position	Arbre élec- trique
Un feedback	dans moteur	FBTYPE	Х	Х	X	
	dans moteur	FBTYPE	Х	Х		
Deux feedbacks		EXTPOS			Х	
	en externe	GEARMODE				Χ

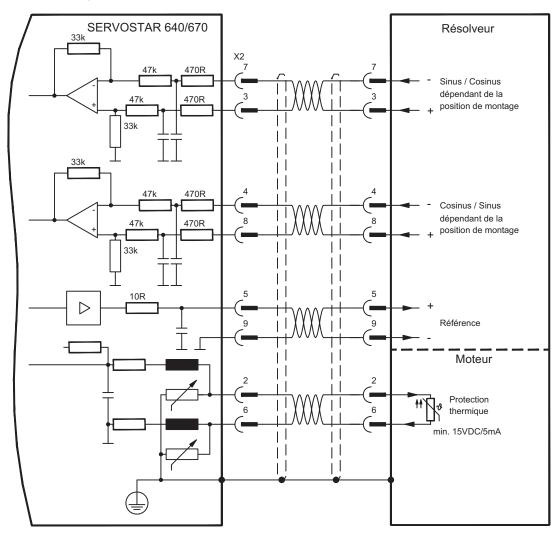
Vous trouverez une description détaillée des paramètres ASCII dans online help du logiciel de mise en service.

Le tableau suivant présente un aperçu des types de feedbacks pris en charge, les paramètres correspondants et une référence au schéma de raccordement actuel. Le brochage de l'extrémité d'émission indiqué fait à chaque fois référence aux moteurs Kollmorgen.

Type de feedback primaire	Connecteur	Schéma de raccordement	FBTYPE
Résolveur	X2	⇒ p.51	0, 3
SinCos Encoder BISS	X1	⇒ p.52	20*
SinCos Encoder ENDAT 2.1	X1	⇒ p.53	3, 4
SinCos Encoder HIPERFACE	X1	⇒ p.53	2, 3
SinCos Encoder sans piste de données	X1	⇒ p.54	6, 7 (16*)
SinCos Encoder + Hall	X1	⇒ p.55	11*
RS422 5V + Hall	X1	⇒ p.55	12*
ComCoder	X1	⇒ p.56	12*
RS422 5V	X5	⇒ p.57	8*, 9*
Sensorless	-	-	10*

^{*} réglable seulement via la fenêtre du terminal du logiciel de mise en service

INFORMATION Vous trouverez les possibilités de combinaison avec des systèmes de feedback secondaires pour la régulation de position/le réducteur électrique en page 58 et suivantes.

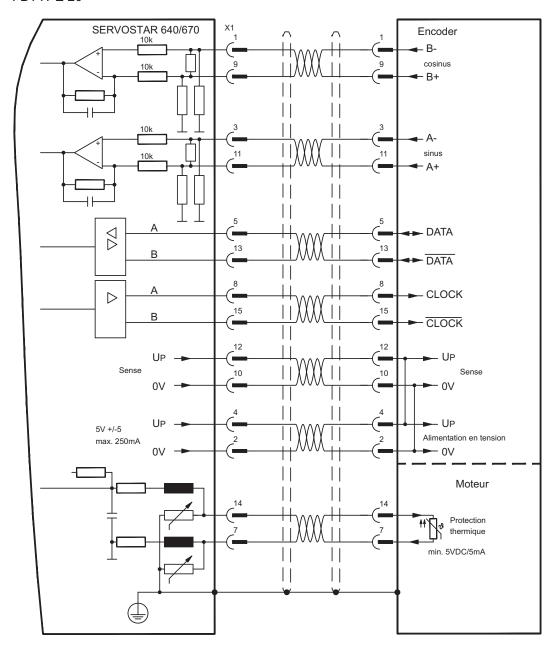

^{**} RS422 signifie ici : codeur incrémental (AquadB)

8.11.1 **Résolveur (X2)**

Connexion d'une résolveur (2...32 pôles) comme appareil de rétroaction standard. La protection thermique dans le moteur est raccordé via le câble du résolveur sur le SERVOSTAR 640/670 et c'est là qu'il y est traité.

Au cas où une longueur de câble de plus de 100 m est prévue, veuillez consulter notre Département Applications.

FBTYPE 0, 3

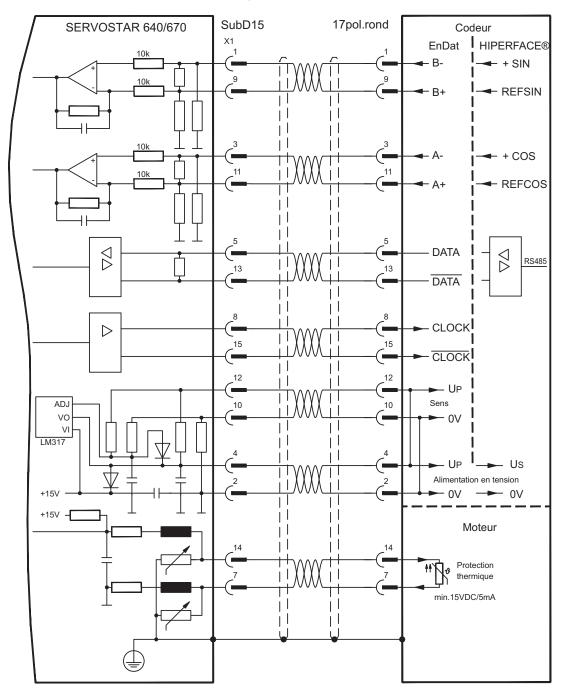

8.11.2 Codeur sinus avec BiSS (X1)

Branchement de codeurs sinus-cosinus monotours ou multitours (5 V) avec interface BiSS en tant qu'appareil de rétroaction (version 6.68 du micrologiciel ou ultérieure). Les paramètres enregistrés dans l'EEPROM du codeur sont lus lors de la connexion du variateur ; l'utilisation des signaux sinus et cosinus a lieu par la suite.

La protection thermique dans le moteur est raccordé à X1 via le câble du codeur. Tous les signaux sont connectés à notre câble de raccordement du codeur confectionné.

Au cas où une longueur de câble de plus de 50 m est prévue, veuillez consulter notre Département Applications.

Fréquence limite (sin, cos): 250 kHz FBTYPE 20


8.11.3 Codeur sinus avec EnDat 2.1 ou HIPERFACE (X1)

Connexion d'un codeur sinus-cosinus monotour ou multitour. Les types préférés sont les codeurs ECN1313 et EQN1325.

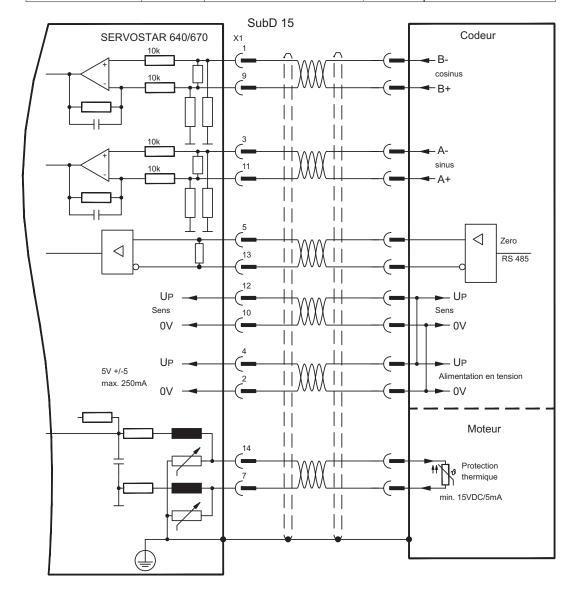
La protection thermique dans le moteur est raccordé à X1 via le câble du codeur. Tous les signaux sont connectés à notre câble de raccordement du codeur confectionné.

Si une longueur de câble de plus de 50 m est prévue, consulter notre département Applications.

Fréquence limit (sin, cos): 250KHz Codeur avec EnDat: FBTYPE 3, 4 Codeur avec HIPERFACE: FBTYPE 2, 3

8.11.4 Codeur sinus sans piste de données (X1)

Connexion d'un codeur sinus-cosinus sans piste de données. A chaque connexion de l'alimentation 24 V, l'amplificateur requiert les informations de démarrage du régulateur de position (valeur de paramétrage MPHASE). Selon le type de feedback, soit un Wake& Shake est réalisé soit la valeur de MPHASE est extraite de l'EEPROM du variateur.

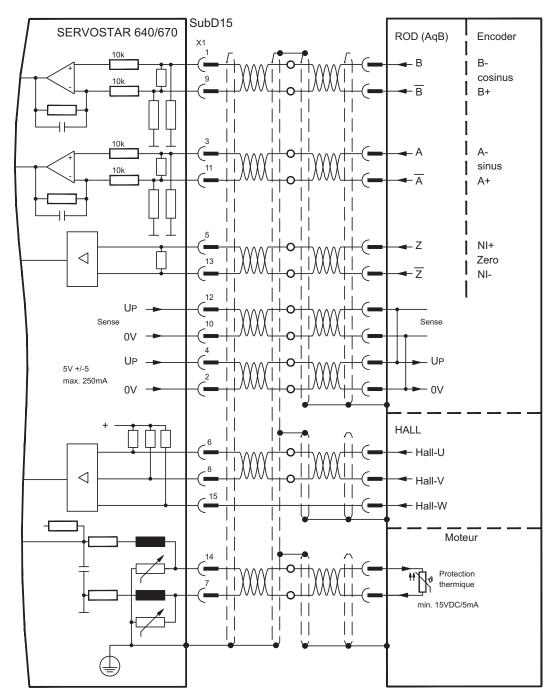

⚠ AVERTISSEMENT La charge verticale peut tomber!

Au niveau des axes verticaux, la charge peut tomber sans être freinée puisqu'en cas de Wake&Shake les freins sont desserrés et qu'il n'est pas possible de créer un couple suffisant pour maintenir la charge. N'utilisez pas cet appareil de rétroaction avec des charges pendues et verticales.

La protection thermique dans le moteur est raccordé à X1 via le câble du codeur. Tous les signaux sont connectés à notre câble de raccordement du codeur confectionné. Pour une longueur de câble prévue dépassant 50 m, veuillez contacter notre division des applications.

réquence limit (sin, cos): 250 kHz

Type de codeur	FBTYPE	Remarque	
SinCos 5V	6	MPHASE de EEPROM	
SinCos 5V	7	MPHASE avec wake & shake	
Resolver+SinCos5V	16	Commutation via le résolveur, vitesse et position via le codeur	

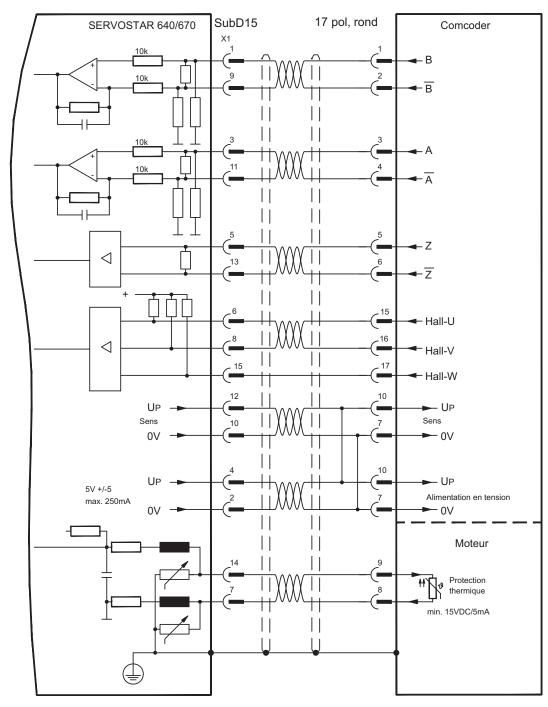


8.11.5 Codeur incrémental / Codeur sinus avec Hall (X1)

Les types de codeurs (incrémental ou sinus/cosinus) qui ne préparent pas d'informations absolues pour la commutation peuvent être analysés, à l'aide d'un codeur Hall supplémentaire, comme appareil de rétroaction complet. Tous les signaux sont connectées à X1.

Pour une longueur de câble prévue dépassant 25 m, veuillez contacter notre division des applications.

Fréquence limit (A, B): 250 kHz RS422 avec Hall: FBTYPE 12 Codeur avec Hall: FBTYPE 11


8.11.6 ComCoder (X1)

En option, les moteurs peuvent être équipés d'un ComCoder comme unité de rétroaction. Pour la commutation, il est possible d'utiliser des codeurs de Hall et pour la résolution un codeur incrémental intégré.

La protection thermique dans le moteur est raccordé via le câble ComCoder à X1 et y est analysé.

Pour une longueur de câble prévue dépassant 25 m, veuillez contacter notre division des applications.

Fréquence limite (A, B): 250 kHz RS422 avec Hall: FBTYPE 12

8.11.7 Codeur incrémental (X5)

Un codeur incrémentiel peut être utilisé comme appareil de rétroaction standard. A chaque connexion de l'alimentation 24 V, l'le variateur requiert les informations de démarrage du régulateur de position (valeur de paramétrage MPHASE). Selon le type de feedback, soit un Wake&Shake est réalisé soit la valeur de MPHASE est extraite de l'EEPROM du variateur.

⚠ AVERTISSEMENT La charge verticale peut tomber!

Au niveau des axes verticaux, la charge peut tomber sans être freinée puisqu'en cas de Wake&Shake les freins sont desserrés et qu'il n'est pas possible de créer un couple suffisant pour maintenir la charge. N'utilisez pas cet appareil de rétroaction avec des charges pendues et verticales.

La protection thermique dans le moteur est raccordé à le variateur via X1 (⇒ p.53) ou X2 (⇒ p.51).


Si vous avez des questions sur l'alimentation en tension du codeur et pour une longueur de câble prévue dépassant 50 m, veuillez contacter notre division des applications.

INFORMATION

AGND et DGND au connecteur X3 doivent être pontés!

Fréquence limite: 1,5 MHz

Type de codeur	FBTYPE	Remarque
RS422 5V	9	MPHASE de EEPROM
RS422 5V	8	MPHASE avec wake & shake

8.12 Arbre électrique, Master-Slave

La fonctionnalité « Arbre électrique » (voir logiciel de mise en service et description du paramètre GEARMODE) permet de commander le variateur à l'aide d'un feedback secondaire comme « esclave ». Vous trouverez de plus amples informations dans <u>online help</u> du logiciel de mise en service. Vous pouvez créer des systèmes maître-esclave, utiliser un codeur externe en tant qu'organe de consigne ou raccorder le variateur à une commande de moteur pas à pas. le variateur est paramétré à l'aide du logiciel de mise en service.

Feedback prim.: configuration sur «RETOUR de POSITION» (FBTYPE)
Feedback sec.: config. sur «Position» et «ARBRE ÉLECTR.» (EXTPOS, GEARMODE)

Configuration maître/esclave

Maître: configurer l'émulation du codeur sur «ROD/SSI/Encoder» (ENCMODE)

Esclave: configuration sur «Position» et «ARBRE ÉLECTR.» (EXTPOS, GEARMODE)

Vous pouvez utiliser les types de capteurs externes suivants :

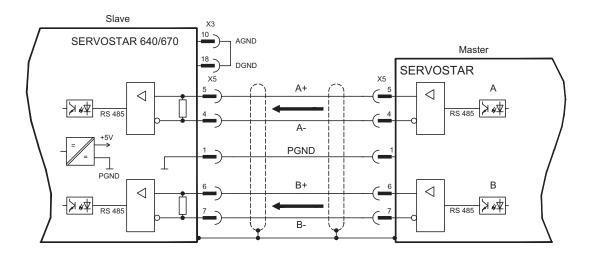
Type de feedback secondaire	Connecteur	Schéma de raccor- dement	GEARMODE
ROD** Encoder 5V	X5	⇒ p.59	3, 5*, 13*, 15*
ROD Encoder 24V	X3	⇒ p.59	0, 2*, 10*, 12*
Sinus/Cosinus Encoder	X1	⇒ p.60	6, 8*, 9*, 16*
SSI Encoder	X5	⇒ p.61	7*, 17*
Impulse/Direction 5V	X5	⇒ p.62	4, 14*
Impulse/Direction 24V	X3	⇒ p.62	1, 11*

^{*} réglable seulement via la fenêtre du terminal du logiciel

Le tableau suivant présente les combinaisons autorisées de systèmes de feedback:

	Feedback secondaire pour la position / la commande			
Feedback primaire	Sinus Encoder (X1)	ROD Encoder 5V/24V (X5/X3)	Imp./Direction 5V/24V (X5/X3)	SSI Encoder (X5)
Résolveur (X2) FBTYPE = 0	GEARMODE = 6,8,9,16 FPGA = 0	EXTPOS = 1,2,3 GEARMODE = 0,2,3,5,10,12,13,15 FPGA = 0 ENCMODE = 0	EXTPOS = 1,2,3 GEARMODE =	
Sinus Encoder (X1) FBTYPE = 2,4,6,7,20	-	EXTPOS = 1,2,3 GEARMODE = 0,2,3,5,10,12,13,15 FPGA = 1 ENCMODE = 0	EXTPOS = 1,2,3 GEARMODE = 1,4,11,14 FPGA = 1 ENCMODE = 0	EXTPOS = 1,2,3 GEARMODE = 7,17 FPGA = 1 ENCMODE = 2
Encoder & Hall (X1) FBTYPE = 11,12	-	EXTPOS = 1,2,3 GEARMODE = 0,2,3,5,10,12,13,15 FPGA = 1 ENCMODE = 0	EXTPOS = 1,2,3 GEARMODE = 1,4,11,14 FPGA = 1 ENCMODE = 0	-
ROD Encoder (X5) FBTYPE = 8,9	-	-	-	-
Sensorless FBTYPE = 10	-	EXTPOS = 1,2,3 GEARMODE = 0,2,3,5,10,12,13,15 FPGA = 0 ENCMODE = 0	EXTPOS = 1,2,3 GEARMODE = 1,4,11,14 FPGA = 0 ENCMODE = 0	EXTPOS = 1,2,3 GEARMODE = 7,17 FPGA = 1 ENCMODE = 2

^{**} ROD est une abréviation pour codeur incrémental

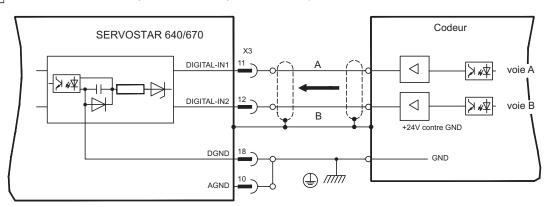

8.12.1 Connexion de SERVOSTAR Master, 5V (X5)

Vous pouvez lier plusieurs variateurs SERVOSTAR (maître-esclave). Jusqu'à 16 le variateurs Slave sont paramétré à l'aide du logiciel setup. Pour connecter le fiche SubD X5 est utilisée.

Fréquence limite: 1,5 MHz, pente du signal $tv \le 0,1\mu s$

INFORMATION

L'AGND et la DGND (connecteur X3) doivent être pontées!

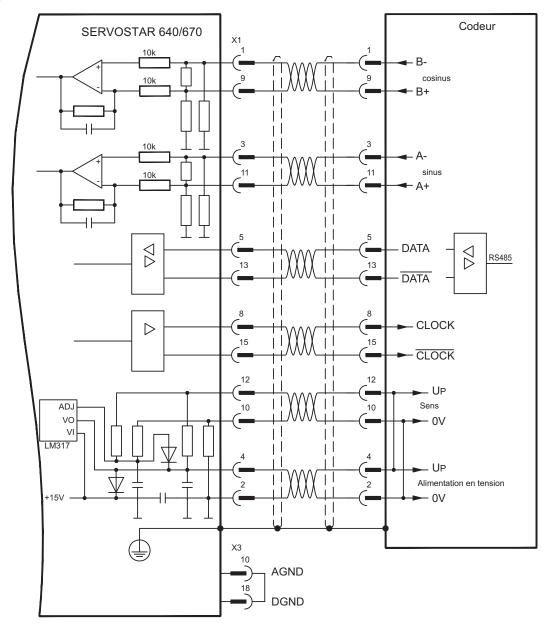

8.12.2 Connexion de codeur, 24V (X3)

Avec cette interface on peut connecter le variateurs SERVOSTAR 640/670 comme esclave après un encodeur (échelle 24V). Pour connecter les entrées numériques DIGITAL-IN 1 et 2 (connecteur X3) sont utilisées.

Fréquence limite: 250 kHz, pente du signal tv ≤ 0,1µs

INFORMATION

L'AGND et la DGND (connecteur X3) doivent être pontées!


8.12.3 Connexion de codeur sinus/cosinus (X1)

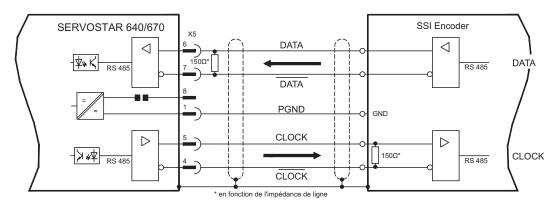
Vous pouvez connecter le variateurs SERVOSTAR 640/670 comme esclave après un encodeur sinus-cosinus. Pour connecter le fiche SubD X1 est utilisée.

Pour une longueur de câble prévue dépassant 50 m, veuillez contacter notre division des applications.

Fréquence limite: 250 kHz

INFORMATION L'AGND et la DGND (connecteur X3) doivent être pontées !

8.12.4 Connexion de codeur SSI (X5)

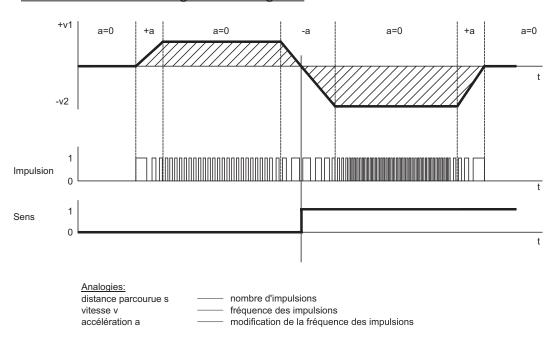

Vous pouvez connecter le variateurs SERVOSTAR 640/670 comme esclave après un codeur absolu synchrone sérielle (SSI, maître-esclave). Le connecteur SubD X5 est utilisé à cette fin.

Si vous avez des questions sur l'alimentation en tension du codeur et pour une longueur de câble prévue dépassant 50 m, veuillez contacter notre division des applications.

Fréquence limite: 1,5MHz

INFORMATION

L'AGND et la DGND (connecteur X3) doivent être pontées!

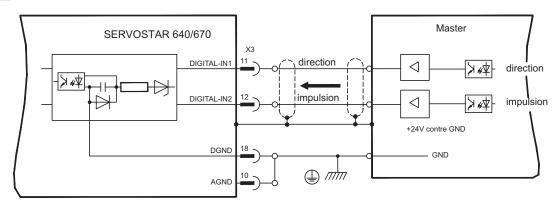

8.12.5 Connexion aux commandes de moteur pas à pas (impulse/direction)

Vous pouvez raccorder le variateur à une commande de moteur pas à pas indépendante du constructeur. Le variateur est paramétré à l'aide du logiciel de commande. Le nombre de pas est réglable; ainsi, le variateur peut être adapté aux signaux de sens d'impulsion de chaque commande de moteur pas à pas. Divers messages peuvent être délivrés.

INFORMATION

Considérez le seuil de fréquence! Le branchement d'un codeur ROD offre une meilleure compatibilité électromagnétique.

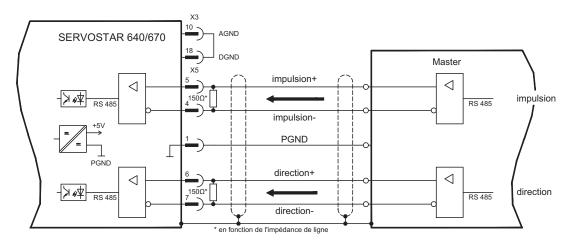
Profil de vitesse avec diagramme de signaux



8.12.5.1 Connexion impulse/direction 5V (X5)

Connexion du variateur à une commande de moteur pas à pas ayant un niveau de signal de 5 V. Pour connecter le fiche SubD X5 est utilisée.

Fréquence limite: 1,5 MHz


INFORMATION L'AGND et la DGND (connecteur X3) doivent être pontées!

8.12.5.2 Connexion impulse/direction 24V (X3)

Connexion du variateur à une commande (échelle 24V) de moteur pas à pas. Pour connecter les entrées numériques DIGITAL-IN 1 et 2 (connecteur X3) sont utilisées. Fréquence limite: 250 kHz

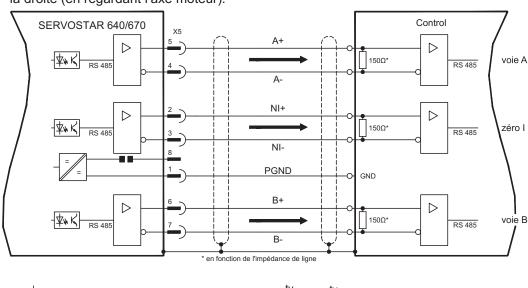
INFORMATION L'AGND et la DGND (connecteur X3) doivent être pontées!

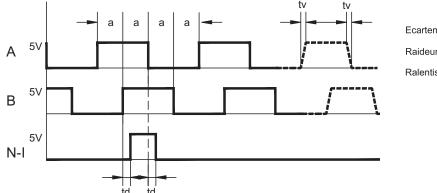
8.13 Emulations codeur

8.13.1 Sortie codeur incrémentiel (X5)

L'interface de codeur incrémentiel fait partie de l'étendue de la livraison . Sélectionnez la fonction de codeur ROD (page de l'écran d'affichage "Encoder"). La position de l'arbre moteur est calculée dans le variateur à partir des signaux cycliques absolus du résolveur ou resp. du codeur et que des impulsions compatibles avec le codeur incrémentiel sont générées à partir de cette information. Des impulsions, sous forme de deux signaux A et B décalés électriquement de 90° ainsi que d'une impulsion nulle, sont délivrées à partir du connecteur mâle SubD X5.

La résolution (c'est-à-dire la précision) peut être réglée par le paramètres RESOLUTION :


Fonction du codeur (ENCMODE)	Fedback	Résolution	Impulsion zéro
DOD (4)	Résolveur	2564096	une par tour (uniquement si A=B=1)
ROD (1)	Encoder	256524288 (2 ⁸ 2 ¹⁹)	une par tour (uniquement si A=B=1)
ROD interpolation (3)	Encoder	2 ² 2 ⁷ Traits TTL * résolution du codeur	Transmission du signal de codeur de X1 à X5.


Vous pouvez régler la position de l'impulsion nulle au cours d'un tour mécanique puis la mémoriser (paramètres NI-OFFSET). L'alimentation des drivers est réalisée par une tension interne.

INFORMATION

La PGND doit dans tous les cas être reliée à l'automate programmable. La longueur de câble au maximum admise est 10 m.

<u>Description des raccordements et des signaux de l'interface de codeur incrémentiel:</u>
Le sens de comptage est réglé pour que les chiffres augmentent, avec une rotation vers la droite (en regardant l'axe moteur).

Ecartement des flancs a ≥ 0,20µs

Raideur de flanc tv $\leq 0,1 \mu s$

Ralentissement Zéro-I-td $\leq 0,1 \mu s$

 $I\Delta UI \geq 2V/20mA$

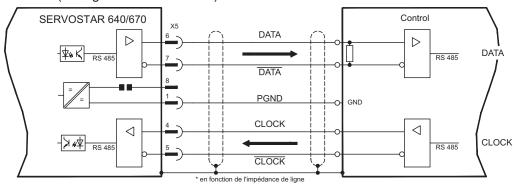
8.13.2 Sortie SSI, absolu synchrone sérielle (X5)

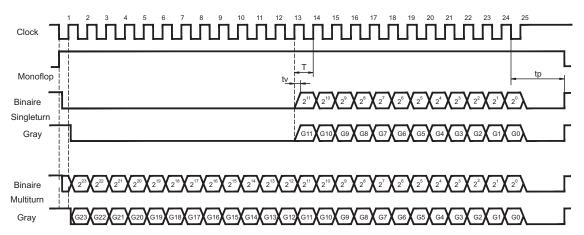
L'interface SSI (émulation synchrone sérielle de codeur absolu) fait partie de la fourniture. Sélectionner la fonction d'encodage Encoder SSI (masque d'écran "Encoder"). Le variateur calcule la position de l'arbre moteur à partir des signaux cycliques absolus émis par le résolveur ou le codeur. Cette information sert à générer un signal de position compatible avec le format de données de codeurs SSI absolus du commerce. La transmission s'effectue en codage 24 bits.

SINGLE TURN: Les 12 bits de poids fort sont forcés à ZÉRO, les 12 bits de poids faible renferment l'indication de position. Sur les résolveurs bipolaires, la valeur de position se réfère à une position angulaire sur un tour complet du moteur, sur les résolveurs quadripolaires à un demi-tour et sur les résolveurs hexapolaires à un tiers de tour.

<u>Exception</u>: lorsqu'un codeur avec piste de commutation est utilisé comme module de retour, les 12 bits de poids fort sont forcés à 1 (données invalides!) jusqu'à ce qu'une marche de référenciation ait été effectuée.

MULTI TURN: les 12 bits de poids fort caractérisent le nombre de tours, les 12 bits de poids faible la position angulaire.


La série de signaux peut être émise au format **Gray** (standard) ou au format **binaire** (paramètre SSI-CODE). Le variateur d'asservissement peut être adapté à la fréquence d'horloge de votre traitement SSI par action sur le paramètre SSI-TAKT (cycle 200 kHz ou 1,5 MHz et inversé).


INFORMATION

L'alimentation des drivers est réalisée par l'intermédiaire d'une tension interne. La PGND doit dans tous les cas être reliée à la commande.

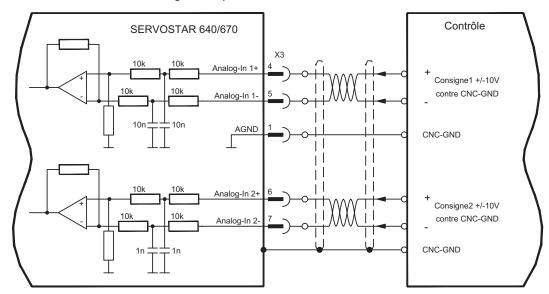
Description des raccordements et des signaux de l'interface SSI:

Le sens de comptage est réglé pour que les chiffres augmentent, avec une rotation vers la droite (en regardant l'axe moteur).

Vitesse de transmission	Durée d'égalisation de monoflop
200 KBaud	tp ~ 13μs
1,5 MBaud	tp ∼ 3µs

Temps de commutation des données $tv \le 300$ ns durée min. de période T = 600 ns

Sortie $|\Delta U| \ge 2V/20mA$ Entrée $|\Delta U| \ge 0,3V$


8.14 Entrées/Sorties digitales et analogiques

8.14.1 Entrées analogiques (X3)

Le variateur pour les valeurs de consigne analogiques possède deux entrées différentielles **programmables**. En tant que référence de potentiel, l'AGND (X3/1) doit toujours être reliée à la CNC-GND de l'automate programmable.

Propriétés techniques

- Tension d'entrée différentielle ± 10 V max.
- Résolution 1.25 mV
- Masse de référence : AGND, borne de connexion X3/1
- Résistance d'entrée 20 kΩ
- Plage de tension en mode commun pour les deux entrées en plus ± 10 V
- Taux d'échantillonnage 62,5 μs

Entrée Analog-IN 1 (bornes X3/4-5)

Tensions d'entrée différent. de ± 10 V max., résolution 14 bits, possibilité d'adaptation. Réglage standard : valeur de consigne de vitesse

Entrée Analog-IN 2 (bornes X3/6-7)

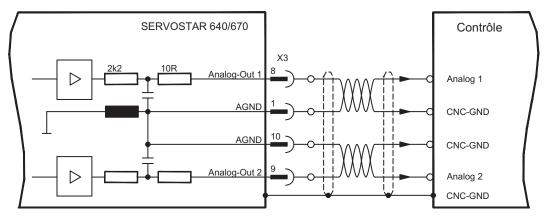
Tensions d'entrée différent. de + 10 V max., résolution 12 bits, possibilité d'adaptation. Réglage standard : valeur de consigne de couple

Exemples d'utilisation pour entrée de valeur de consigne Analog-IN 2:

- limitation de courant réglable externe
- entrée atténuée pour entrée pour service de réglage/service par "tops"
- précommande / override

Affectation de sens de rotation

Réglage standard : rotation vers la droite de l'arbre moteur (en regardant l'arbre)


- Tension positive sur la borne X3/4 (+) par rapport à la borne X3/5 () ou
- Tension positive sur la borne X3/6 (+) par rapport à la borne X3/7 ()

Pour inverser le sens de rotation, vous pouvez permuter la disposition des bornes X3/4-5 ou X3/6-7, ou modifier le paramètre SENS DE ROTATION sur la page d'écran "boucle de vitesse".

8.14.2 Sorties analogiques (X3)

Propriétés techniques

- La masse de référence est Analog GND (AGND, borne X3/1 et X3/10)
- Résistance de sortie : 2.2kΩ
 Tension de sortie ±10V
 Résolution : 10 bits
- Taux d'échantillonnage 62,5 μs

Sorties analogiques programmables Analog-Out 1 / Analog-Out 2

Vous pouvez utiliser les bornes X3/8 (Analog-Out 1) ou X3/9 (Analog-Out 2) pour sortir des valeurs analogiques converties à partir de valeurs de mesure digitales saisies dans le variateur.

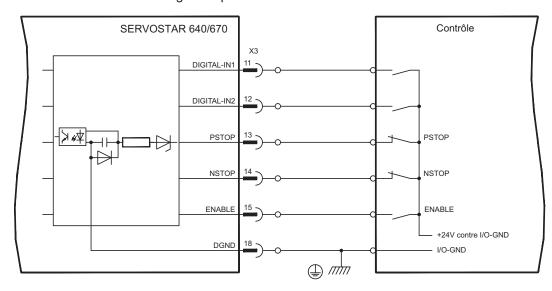
Réglage standard :

Analog-Out 1 : tension tachymétrique $n_{r\acute{e}el}$ (vitesse) La sortie délivre ±10 V pour la vitesse finale réglée.

Analog-Out 2 : valeur de courant réel I_{réel} (couple)

La sortie délivre ± 10 V pour le courant de crête réglé (valeur efficace du courant).

La borne X3/8 (Analog-Out 1) ou la borne X3/9 (Analog-Out 2) peuvent servir à afficher des valeurs analogiques captées sous forme de signaux de mesure numériques par le variateur d'asservissement.


Une liste des fonctions programmées se trouve dans le système d'aide du logiciel setup.

8.14.3 Entrées numériques (X3)

Toutes les entrées numériques sont couplées par l'intermédiaire de coupleurs optoélectriques, à potentiel flottant.

Propriétés techniques

- La masse de référence est **Digital** GND (DGND, borne X3/18)
- La logique est compatible API (selon IEC 61131-2 type 1)
- High: 11...30V / 2...11mA, Low -3...5V / <1 mA</p>
- Taux d'échantillonnage 250 μs

Entrée validation ENABLE

Vous validez l'étage final du variateur par le signal de validation Enable (borne X3/15, entrée 24 V, **High active**).

A l'état inhibé (signal L), le moteur raccordé est sans couple.

Entrées numériques programmables:

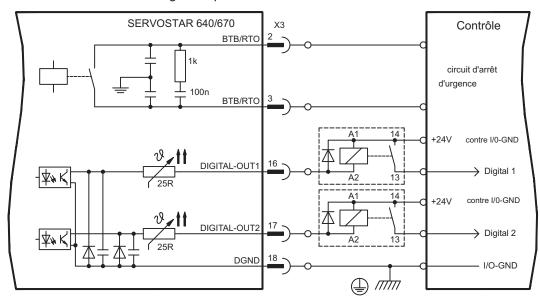
Vous pouvez utiliser les entrées numériques PSTOP / NSTOP / DIGITAL-IN1 et DIGITAL-IN2 pour déclencher des fonctions mémorisées et programmées dans le variateur. Une liste de ces fonctions programmées se trouve dans la page "E/S numériques" du logiciel setup.

Dans le cas où une fonction programmée serait réaffectée à une entrée, le jeu de données doit être mémorisé dans l'Eeprom du variateur et l'alimentation en courant auxiliaire de 24 V du variateur doit être arrêtée et mise en marche à nouveau (remise à zéro du logiciel du variateur).

Capteur fin de course PSTOP / NSTOP

En standard, les bornes X3/13 et X3/14 sont programmées pour le raccordement de capteurs fin de course. Si ces entrées ne sont pas utilisées pour le raccordement de capteurs fin de course, vous pouvez les programmer librement pour d'autres fonctions d'entrée.

Capteurs fin de course positif/négatif (**PSTOP / NSTOP**, bornes X3/13 et X3/14), niveau High en service normal (protégé contre les ruptures de câble). Un signal LOW (ouvert) inhibe le sens de rotation correspondant, **la fonction de rampe demeure efficace**.


DIGITAL-IN 1 / DIGITAL-IN 2

Vous pouvez combiner les entrées numériques borne X3/11 (DIGITAL-IN 1) ou resp. borne X3/12 (DIGITAL-IN 2) à une fonction programmée.

8.14.4 Sorties numeriques (X3)

Propriétés techniques

- La masse de référence est Digital GND (DGND, borne X3/18)
- Toutes les sorties numériques sont sans potentiel
- DIGITAL-OUT1 et 2 : Open-collector, 30 V DC, 10 mA max.
- BTB/RTO : Sortie sur relais, 30 V DC, 42 V AC, 0.5 A max.
- Taux d'échantillonnage 250 μs

Contact "Prêt" à fonctionner BTB/RTO

L'état prêt à fonctionner (bornes X3/2 et X3/3) est signalé via un contact à relais **sans potentiel**.

Le contact est **fermé** pour le variateur prêt à fonctionner, le message **n'est pas** influencé par le signal Enable, par la limitation l²t et par le seuil de ballast.

INFORMATION

Tous les défauts engendrent une retombée du contact BTB et une inactivation de l'étage final (en cas de contact BTB ouvert, l'étage final est bloqué -> pas de puissance). Vous trouverez une liste des messages de défaut à la page 95.

Sorties numériques programmables DIGITAL-OUT 1 / 2:

Vous pouvez utiliser les sorties numériques DIGITAL-OUT1 (borne X3/16) et DIGITAL-OUT2 (borne X3/17) pour écrire en sortie des messages de fonctions mémorisées et programmées dans le variateur. Une liste de ces fonctions programmées se trouve dans la page "E/S numériques" du logiciel setup.

Dans le cas où le message d'une fonction programmée serait réaffecté à une sortie, le jeu de données doit être mémorisé dans l'Eeprom du variateur et l'alimentation en courant auxiliaire de 24 V du variateur doit être arrêtée et mise en marche à nouveau (remise à zéro du logiciel du variateur).

Il faut évaluer les sorties avec un relais inversé (voir schéma de racc. ci-dessus), comme par exemple Phönix DEK-REL-24/I/1 (temp. de démarrage: 6 ms, temp. de coupe circuit: 16ms).

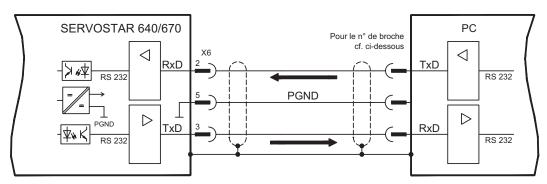
INFORMATION

La logique (high-, low-active) explicée dans le <u>online help</u> et dans le système d'aide du logiciel setup se réfère au sortie de relais. Faire attention au temporisations!

8.15 Interface RS232, connexion de PC (X6)

Le réglage des paramètres de service, de régulateur de position et de bloc de marche peut être exécuté par l'intermédiaire logiciel setup sur un ordinateur individuel (PC) du commerce.

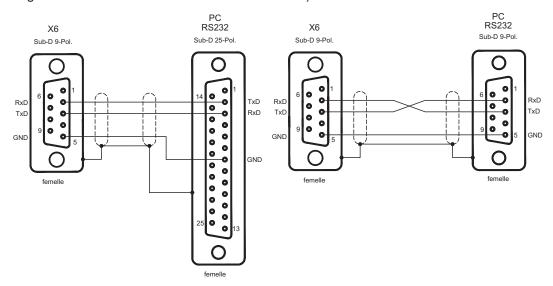
Relier l'interface PC (X6) du variateur, **la tensions d'alimentation étant coupées**, via un câble modem zéro à une interface série du PC.


INFORMATION

Ne pas utiliser de câble de liaison modem zéro!

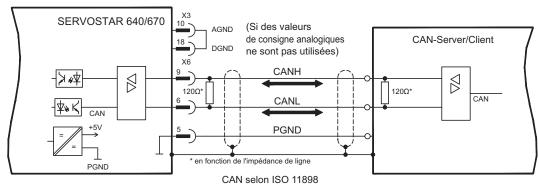
L'interface, isolée galvaniquement via des coupleurs optoélectriques, est placée au même potentiel que l'interface CANopen.

L'interface est sélectionnée et réglée dans le logiciel setup.


D'autres indications vous trouvent page 79.

Sur le module d'expansion optionnelle -2CAN- les deux interfaces RS232 et CAN, qui occupent normalement le même connecteur X6, sont réparties sur deux embases distinctes. (⇒ p.76).

Câble de transfert entre le PC et le variateur de la série SERVOSTAR 640/670:


(Vue de dessus sur les connecteurs mâles SubD intégrés; ce qui correspond au côté brasage des connecteurs femelles SubD sur la câble)

8.16 **Interface CANopen (X6)**

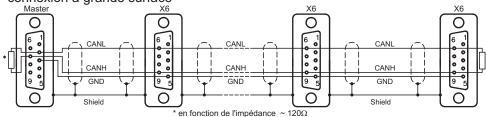
Interface destinée à un raccordement au bus CAN (default : 500 kBauds). Le profil intégré est basé sur le profil de communication CANopen DS301 et sur le profil d'entraînement DSP402. En liaison avec la régulateur de position intégré, les fonctions suivantes sont entre autres disponibles: mode "Tops" à vitesse variable, déplacement sur origine de position, lancement de l'instruction de déplacement, lancement de l'instruction de déplacement direct, prédéfinition de valeur de consigne numérique, fonctions de transfert de données et bien d'autres. Vous trouverez des informations détaillées dans le manuel de la CANopen. L'interface est isolée galvaniquement via des coupleurs optoélectriques et est sur le même potentiel que l'interface RS232. Les entrées de valeur de consigne analogiques peuvent encore être utilisées. Sur le module d'expansion optionnelle -2CANles deux interfaces RS232 et CAN, qui occupent normalement le même connecteur X6, sont réparties sur deux embases distinctes. (⇒ S.111).

INFORMATION L'AGND et la DGND (connecteur X3) doivent être pontées!

Câble de bus CAN

Conformément aux normes ISO 11898, il est recommandé d'utiliser un câble de bus avec une impédance particulière de 120 Ω . La longueur de câble requise pour une communication sûre réduit avec la croissance du taux de transfert. Les valeurs indiquées ci-après, que nous avons mesurées, peuvent servir de points de repère mais ne sont pas à considérer en tant que limites:

Données de câble : impédance particulière 100-120 Ω max. 60 nF/km capacité de service


résistance de conducteur (boucle) 159,8 Ω /km

Longueurs de câble en fonction des taux de transfert

Taux de transfert / kBaud	longueur max. de câble / m
1000	20
500	70
250	115

Une plus grande amplitude de transfert peut être obtenue avec une moindre capacité de service (max. 30 nF/km) ainsi qu'avec une résistance de conducteur moins importante (boucle 115 Ω /km). (Impédance particulière 150 ± 5 Ω \Rightarrow impédance terminale 150 ± 5 Ω). Pour des raisons de CEM, nous vous demandons d'observer les points suivants en ce qui concerne le logement de la prise Sub-D:

- boîtier métallique ou couvert d'une couche de métal
- possibilité de raccordement pour la protection du conducteur dans le boîtier, connexion à grande surface

8.17 Verouillage de redémarrage -AS-

La protection contre le redémarrage de moteurs constitue l'une des tâches d'application les plus fréquentes. Une telle protection ne peut pas être assurée par un verrouillage électronique mais doit être réalisée par des éléments mécaniques (contacts de relais forcés).

Un relais de sécurité dans le variateur est excité par l'API ou manuellement. Des organes de commutation forcée mettent l'étage final du variateur fiablement hors circuit, l'entrée de valeur de consigne du variateur se trouve verrouillée et il y a délivrance d'un message au circuit de sécurité.

Les exemples de branchements sont conformes à la catégorie de sécurité 1 selon la norme EN 954-1, voire à la catégorie 3 en présence d'un relais de sécurité auxiliaire (par ex. PNOZ de la société Pilz).

Les avantages du verrouillage de redémarrage -AS- :

- le circuit interm. demeure chargé car le circuit de courant principal demeure actif
- seule une basse tension est commutée, donc pas d'usure des contacts
- les tâches de câblage sont réduites à un minimum

Exploition d'axes isolés ou de groupes d'axes en mode setup

Lors du service de réglage, il n'est pas rare que des personnes séjournent dans la zone dangereuse de la machine. En règle générale, le déplacement des axes est lancé via des interrupteurs de confirmation. Une mise hors marche des axes non utilisés via le verrouillage de démarrage accroît la sécurité et permet d'exclure la commutation permanente des contacteurs de secteur et des contacteurs-disjoncteurs.

Deactivée d'axes groupés en présence de zones de travail séparées

Même si plusieurs SERVOSTAR 640/670 travaillent sur un raccordement de circuit de secteur et intermédiaire commun, il est possible de former des groupes pour zones de travail séparées qui peuvent alors être coupées indépendamment l'une de l'autre afin de sécuriser le personnel.

AVIS

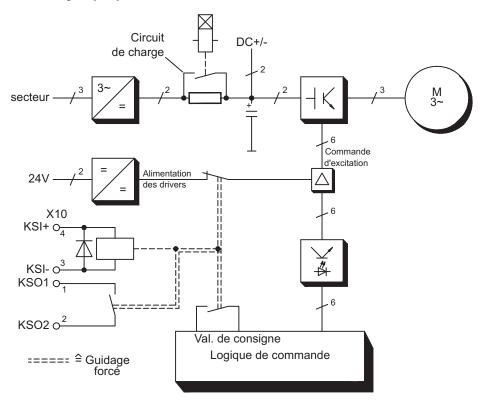
Le variateur SERVOSTAR 640/670 n'est pas d'une fonction de sécurité suivant la norme EN 61800-5-2. Le système de verrouillage du démarrage -AS- ne doit pas être assimilé à la fonction STO. La fonction AS décrite est issue de la norme EN 945-1. Cette norme n'est plus reprise dans la directive Machine (2006/42/CE) depuis le 31.12.2012. Les exigences imposées aux variateurs par la norme EN 945-1 concernant la mise en place d'un système de verrouillage du redémarrage ont également été respectées.

8.17.1 Remarques en matière de sécurité

- Regardez "Utilisation conforme du verrouillage de redémarrage -AS- (⇒ p.72)
- Les contacts de surveillance (KSO1/2) de chaque variateur doivent être intégrés dans le circuit de courant de commande. C'est la seule méthode permettant de reconnaître un fonctionnement erroné du relais de sécurité interne ou une rupture de câble.
- Si le verrouillage est automatiquement excitée par un automate programmable (KSI1/2), il faut s'assurer que la sortie de l'automate programmable est surveillée eu égard aux fonctions erronées. Ceci permet d'éviter qu'un défaut de sortie sur l'automate programmable donne lieu à l'excitation du verrouillage de redémarrage lorsque le moteur tourne.
- La suite fonctionnelle suivante doit obligatoirement être respecté :
 - 1. Freiner le moteur de manière réglée (valeur de consigne de vitesse=0V)
 - 2. Lorsque la vitesse=0tr/mn, dévalider le variateur (validation=0V)
 - 3. A charge suspendue, bloquer le moteur en plus mécaniquement
 - 4. Exciter le verrouillage de redémarrage -AS-

8.17.2 Utilisation conforme

Le verrouillage de démarrage -AS- est **exclusivement** destiné à sécuriser l'entrainement contre le risque d'un redémarrage d'un moteur / servosystème. Le montage du circuit de sécurité doit remplir les exigences de sécurité selon les normes EN60204, EN12100 et EN 954-1.


Le verrouillage de démarrage -AS- n'a le droit d'être activé que,

- si le moteur ne tourne plus (valeur de consigne 0 V, vitesse 0 tr/mn, validation 0 V).
 Les moteurs à charge suspendue doivent en plus être bloqués, ceci mécanique-m ent et avec fiabilité (p. ex. par le frein d'arrêt du moteur).
- si les contacts de surveillance (KSO1/2) de tous les variateurs ont été intégrés dans le circuit de courant de commande.

Le verrouillage de démarrage -AS- a **uniquement** le droit d'être excité par une commande numérique lorsque la commande d'excitation du relais de sécurité interne est surveillée de manière redondante. Le verrouillage de démarrage -AS- **ne doit pas** être utilisé lorsque le moteur doit être mis à l'arrêt pour des raisons suivants :

- Travaux de nettoyage, d'entretien et de réparation, interruptions d'exploitation prolongées. Dans pareils cas, le personnel doit mettre l'installation hors tension et la sécuriser intégralement (interrupteur principal)
- Situations d'arrêt d'urgence
 En cas d'arrêts d'urgence, c'est le contacteur de secteur qui est mis hors circuit (bouton-poussoir d'arrêt d'urgence)

8.17.3 Schéma synoptique

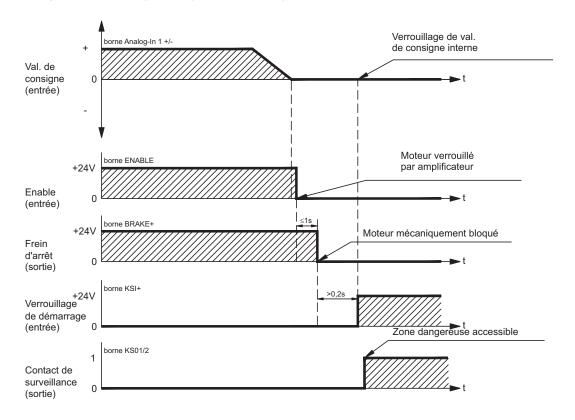
8.17.4 Description fonctionelle

La platine avant du SERVOSTAR 640/670 est munie d'un connecteur supplémentaire (X10). Ce connecteur mâle met à disposition, via 4 bornes de connexion, des raccordements d'enroulement d'un relais de sécurité et d'un contact de fermeture.

Le relais de sécurité 24V DC dans le variateur (homologué par le Service technique allemand - TÜV) est excité de par l'extérieur. Tous les contacts de commutation du relais sont forcés.

Deux contacts de commutation coupent dans le variateur l'alimentation pilote de l'étage final et ajustent le signal de valeur de consigne interne sur AGND (0 V).

Le contact de surveillance (contact de fermeture) est bouclé dans le circuit de courant de commande. Si le relais de sécurité n'est pas excité, le contact de surveillance est ouvert et le variateur est prêt à fonctionner.

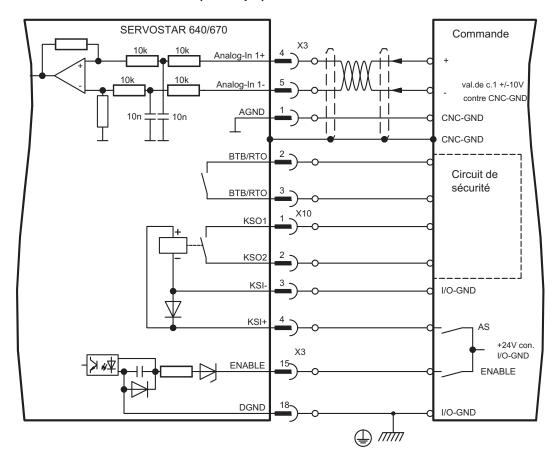

Si le moteur est électroniquement freiné, si le variateur est dévalidé et si le frein d'arrêt du moteur est activé, le relais de sécurité est excité (manuellement ou par l'automate programmable).

L'alimentation en tension de la commutation pilote d'étage final est coupée de manière sûre par le relais, la valeur de consigne interne est mise sur 0 V et le contact de surveillance ponte dans le circuit de courant de commande de l'installation la logique de sécurité (surveillance de portes de protection ou semblable)

Même si l'étage final ou si la commande d'excitation est détruit(e), aucun démarrage du moteur n'est possible étant donné que le champ de rotation nécessaire à cet effet ne peut pas se former.

Au cas ou le relais de sécurité proprement dit présentait un défaut, il n'est alors pas possible que le contact de surveillance ponte la logique de sécurité dans l'installation. Une ouverture des dispositifs de sécurité coupera l'installation.

8.17.5 Diagramme de signaux (déroulement)

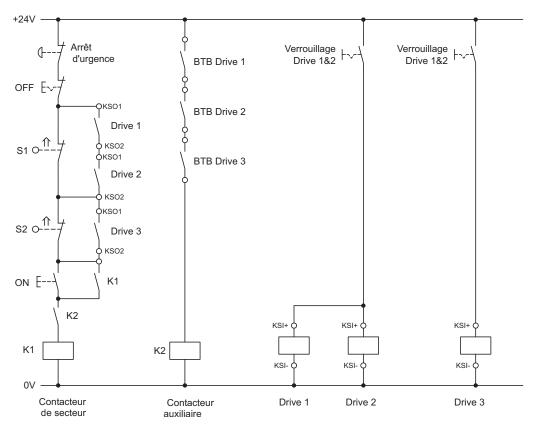

8.17.6 Contrôle fonctionnel

AVIS

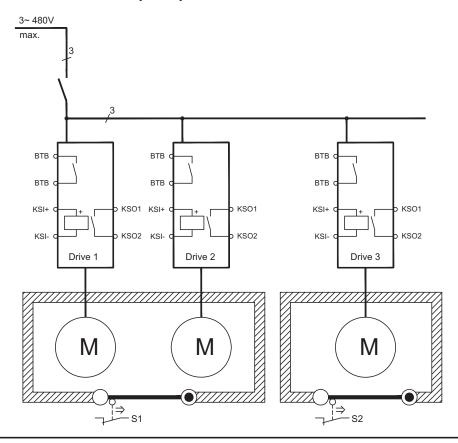
Lors de la première mise en service et suite à chaque intervention sur le câblage de l'installation ou remplacement d'un ou de plusieurs composants de l'installation, il convient de contrôler le bon fonctionnement du verrouillage de démarrage.

- 1. Arrêter tous les moteurs avec la valeur de consigne 0 V, dévalider les moteurs, bloquer mécaniquement les charges suspendues
- 2. Exciter le verrouillage de redémarrage -AS-
- 3. Ouvrir la grille de protection (sans pénétrer dans la zone de protection)
- 4. Retirer le connecteur X10 d'un variateur: le contacteur de secteur doit alors retomber
- Réenficher le connecteur mâle X10. Remettre le contacteur en marche. 5.
- Répéter les pas 4 et 5 pour chaque variateur individuel. 6.

8.17.7 Schéma de raccordement (Principe)

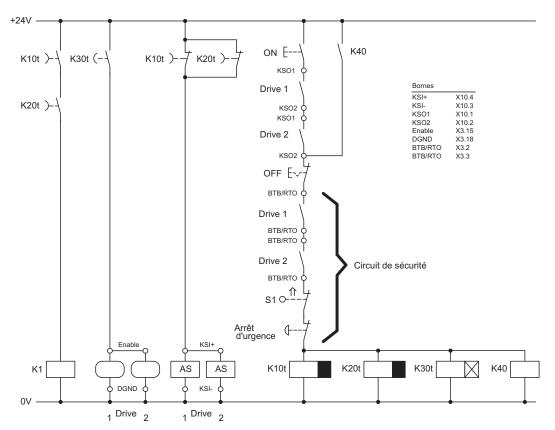


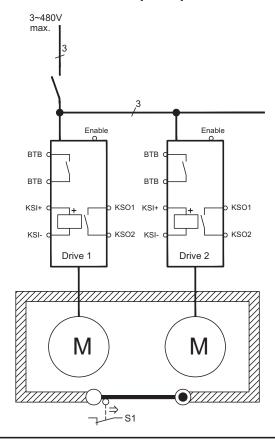
INFORMATION Exemples d'utilisation pour les catégories 1, voir chapitre 8.17.8.


8.17.8 Exemples d'utilisation Catégorie 1 selon EN954-1

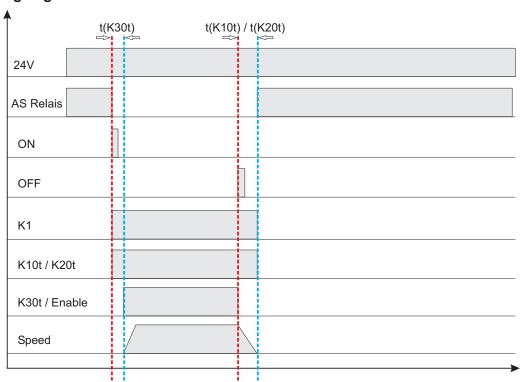
Organigramme avec arrêt et arrêt d'urgence classe 0.

8.17.8.1 Circuit de courant de commande


8.17.8.2 Circuit de courant principal


8.17.9 Exemples d'utilisation Catégorie 3 selon EN954-1

Organigramme avec arrêt et arrêt d'urgence classe 1.


8.17.9.1 Circuit de courant de commande

8.17.9.2 Circuit de courant principal

8.17.9.3 Organigramme

$t(K30t) \ge 500ms$

Les temps **t(K10t)** et **t(K20t)** maintiennent l'entraînement en activité jusqu'à l'arrêt de l'axe. Cette durée dépend de l'application et doit être supérieure à celle de la rampe de ralentissement.

INFORMATION

Une fois les temps t(K10t) et t(K20t) écoulés, l'entraînement doit être arrêté de manière fiable. Une fois ces durées écoulées, un ralentissement au moyen du variateur n'est plus possible.

9 Mise en service

Un Exemple de processus de mise en service et donné. Mais, il s'avérera judicieux ou nécessaire de procéder autrement, en fonction de l'utilisation des appareils. Dans le cas de systèmes multiaxes, chaque variateur devra être mis individuellement en service. Le constructeur de la machine doit faire établir une appréciation du risque pour la machine et prendre les mesures appropriées pour que des mouvements intempestifs n'entraînent pas des dommages corporels et/ou matériels.

9.1 Remarques Importantes

ADANGER Tension létale!

Risque de choc électrique. Il existe un danger mortel au niveau des composants sous tension de l'appareil.

- Les dispositifs de protection intégrés, tels qu'une isolation ou un blindage, ne peuvent pas être retirés.
- Seul du personnel dûment formé et qualifié est habilité à travailler sur l'installation électrique, conformément aux réglementations sur la sécurité au travail, et uniquement lorsque l'alimentation secteur coupée et protégée contre tout redémarrage.

AVERTISSEMENT Redémarrage automatique!

Il existe un risque de blessures graves, voire mortelles, pour les personnes travaillant sur la machine. Lorsque le paramètre <u>AENA</u> est défini sur 1,

- placez un panneau d'avertissement sur la machine (Avertissement : Redémarrage automatique après la mise en marche!) et
- assurez-vous qu'il n'est pas possible d'enclencher la tension d'alimentation pendant que des personnes se trouvent dans la machine.

AVIS

Si le variateur a été entreposé plus d'1 an, il faudra reformer les condensateurs du circuit intermédiaire. A cet effet, déconnecter tous les raccordements électriques. Alimenter le variateur pendant une trentaine de minute, en mode monophasé, en 230 V CA sur les bornes L1 / L2. Ceci aura pour effet de reformer les condensateurs.

INFORMATION

Informations plus détaillées quant à la mise en service :

L'adaptation de paramètres et les effets sur la régulation sont décrits dans le système d'aide du logiciel de mise en service (<u>online help</u>).

La mise en service de la carte d'expansion éventuellement en place est décrit dans le manuel correspondant sur le CD-rom.

Nous proposons des cours de formation (sur demande).

9.2 Logiciel setup

9.2.1 Généralités

Ce chapitre explique l'installation du logiciel setup pour le variateur numérique SERVOSTAR 640/670.

Des cours de formation et d'initiation peuvent être suivis sur demande.

9.2.1.1 Utilisation conforme

Le logiciel setup sert à modifier et à mémoriser les paramètres de service des variateurs de la série SERVOSTAR 640/670. Le variateur raccordé est mis en service à l'aide du logiciel, le servomoteur pouvant être directement commandé par les fonctions de service.

Le paramétrage en ligne (online) d'un servomoteur en marche est exclusivement réservé à un personnel spécialisé possédant les connaissances spécifiques décrites à la page 7.

Les blocs de données mémorisés sur des supports de données ne sont pas protégés contre les risques de modification par des personnes non autorisées. C'est pourquoi, après avoir chargé un bloc de données, vous devrez toujours vérifier tous les paramètres avant de valider le variateur.

9.2.1.2 Description du logiciel

Les variateurs doivent être adaptés aux spécifications de votre machine. Ce paramétrage s'effectue à partir d'un ordinateur individuel (PC) - et non pas sur le variateur proprement dit - à l'aide du logiciel setup. Le PC est relié au variateur par un câble modem zéro (sériel, ⇒ p. 69).

Le logiciel setup assure la communication entre le PC et la série SERVOSTAR 640/670.

Vous trouverez le logiciel de mise en service sur le CD-ROM ainsi que sur notre site internet à la rubrique des téléchargements.

Il est facile de modifier les paramètres et de constater immédiatement l'effet de ces modifications sur le moteur car il existe une liaison permanente (online) avec le variateur. La lecture des valeurs réelles importantes du variateur et leur affichage sur l'écran du PC ont lieu simultanément (fonctions d'oscilloscope).

Des modules d'interface (cartes d'expansion) éventuellement montés dans le variateur sont automatiquement identifiés. Les paramètres supplémentaires nécessaires à la régulation de position ou à la définition du bloc de marche sont mis à disposition.

Vous pouvez stocker des jeux de données sur un support de mémoire et charger à nouveau. Les jeux de données peuvent être sortis sur imprimante.

Nous livrons des jeux de données de défaut relatives au moteur pour les combinaisons variateur/moteur les plus judicieuses. Ceux-ci s'appliquent à toutes les combinaisons variateur-moteur. Dans la plupart des cas, ces valeurs implicites vous permettront de mettre votre servosystème en service en toute facilité.

Une <u>Online-Help</u> détaillée intégrant une description de toutes les variables et fonctions vous assistera dans toutes les situations.

9.2.1.3 Exigences par rapport au matériel

L'interface PC (X6, RS232) du variateur est relié, via un câble modem zéro (ne pas utiliser de câble de liaison modem zéro!) à une interface sériel du PC (⇒ p..69).

AVIS

Débranchez et branchez la ligne uniquement à tension d'alimentation coupée (variateur et PC).

L'interface dans le variateur est isolée galvaniquement via des coupleurs optoélectriques et est sur le même potentiel que l'interface CANopen.

Exigences minimales par rapport au PC:

Processeur : Pentium® II ou supérieur

Système d'exploitation: WINDOWS

Carte graphique : WINDOWS compatible, couleur Lecteur : disque système (10MO libres)

Lecteur de CD-ROM

Mémoire volatile : au moins 8 MO

Interface : une interface sériel libre (COM1 ... COM10)

9.2.1.4 Systèmes d'exploitation

WINDOWS 95(c) / 98 / 2000 / ME / NT / XP / Vista / 7

DRIVE.EXE peut tourner sous WINDOWS 95(c) / 98 / 2000 / ME / NT 4.0 / XP / Vista / 7. Le système d'aide ne peut pas être utilisé avec Windows 95a et 95b.

WINDOWS FOR WORKGROUPS 3.xx, DOS, OS2

DRIVE.EXE ne peut pas tourner sous WINDOWS 3.xx, DOS et OS2. Un régime de secours est possible avec une émulation de terminal ASCII (sans interface). Configuration de l'interface : 9600 baud, 8 Databit, 1 Stopbit, pas de parité, pas de handshake.

Unix, Linux

DRIVE.EXE **ne peut pas** actionner sous Unix et Linux.

WINDOW 8, 10

DRIVE.EXE n'est pas examiné WINDOWS 8 et 10.

9.2.2 Installation sous WINDOWS

Sur le CD-ROM se trouve la programme d'installation du logiciel de mise en service.

Installation

Fonction de démarrage automatique activée :

Déposez le CD-ROM dans un lecteur non utilisé. Une fenêtre s'ouvre avec l'écran de démarrage du CD. Vous trouvez ici un lien vers le logiciel de mise en service DRIVE.EXE. Cliquez dessus et suivez les instructions.

Fonction de démarrage automatique désactivée :

Déposez le CD-ROM dans un lecteur non utilisé. Cliquez sur DÉMARRER (barre des tâches), puis sur Exécuter. Tapez dans la fenêtre de saisie l'appel du programme : **x:\index.htm** (x= lettre correcte du lecteur de CD). Cliquez sur OK puis continuez comme décrit plus haut.

Raccordement à l'interface sériel du PC

Raccordez la ligne de transfert à l'interface sériel de votre PC puis à l'interface PC (X6) du SERVOSTAR 640/670 (⇒ p.69).

9.3 Démarrage et test rapides

9.3.1 Préparation

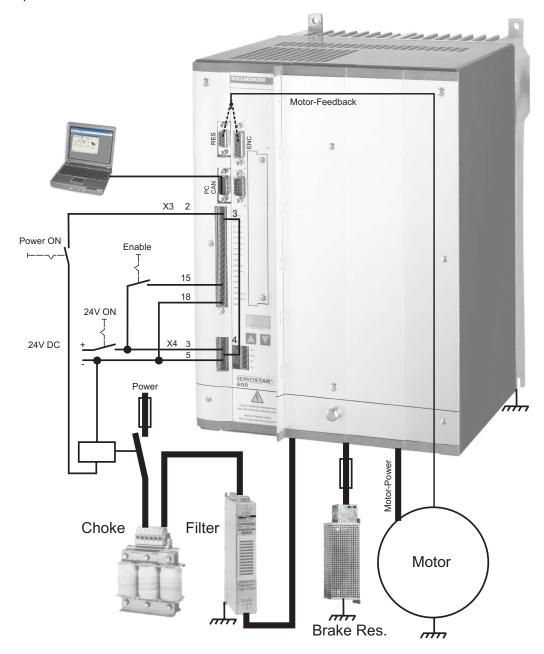
Déballer et installer et câbler du variateur

- 1. Retirer le variateur et les accessoires de l'emballage
- 2. Respecter les avertissements des manuels
- 3. Monter le variateur comme décrit dans chapitre 7.3
- 4. Connecter le variateur comme décrit dans chapitre 8.3 ou utiliser le mini-câblage décrit dans chapitre 9.3.1.
- 5. Installez le logiciel comme décrit dans chapitre 9.2.
- 6. Vous avez besoin des informations suivantes sur les composants de l'entraînement :
 - Tension nominale secteur
 - Type de moteur (données du moteur lorsqu'il n'est pas répertorié dans la base de données des moteurs : voir l'<u>Online Help</u>)
 - Système de rétroaction installé dans le moteur (type, nombre de pôles/nombre de lignes/protocole de données, etc.)
 - Moment d'inertie de la charge

Documentation

Les documentations suivantes sont nécessaires (au format PDF sur le CD-ROM du produit). Vous pouvez également télécharger la version la plus actuelle d'un manuel à partir de notre site Internet :

- Manuel d'Instructions (cette manual)
- Profil de communication CANopen
- Manuel des accessoires


Selon la carte d'extension intégrée, les documentations suivantes sont nécessaires :

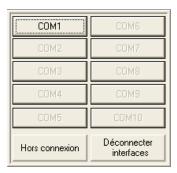
- Profil de communication PROFIBUS DP
- Profil de communication DeviceNet
- Profil de communication SERCOS
- Profil de communication EtherCAT

Acrobat Reader est nécessaire pour la lecture des fichiers PDF. Vous trouverez un lien d'installation sur chaque page d'écran du CD-ROM du produit.

Câblage minimal pour le test rapide

INFORMATION Ce câblage ne remplit pas d'exigences en matière de sécurité ou efficacité du fonctionnement de votre application. Elle ne montre que le câblage minimal nécessaire pour le test rapides.

9.3.2 Connexion


- Raccordez le câble de transmission à une interface série de votre PC et à l'interface série X6 du variateur. En option, il est possible d'utiliser un convertisseur série/USB.
- Branchez l'alimentation 24 V de votre variateur.
- Attendez environ 30 secondes, jusqu'à ce que l'écran de la face avant du variateur affiche les types de courant (par ex. ⊕ ⊕ pour 40 A). Si l'alimentation en puissance est également branchée, un P (par ex. ₱ ₱ pour Power, 40 A) s'affiche.

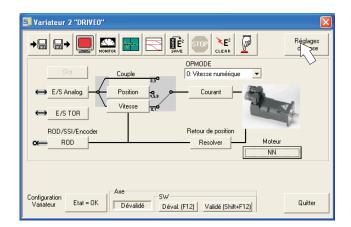
INFORMATION

Si un code d'erreur ($\{ \{ \}, \{ \}, \} \}$), un avertissement ($\{ \{ \}, \{ \}, \} \}$) ou une remarque ($\{ \}, \{ \}, \} \}$) s'affichent, vous trouverez une description correspondante sur page 95ff. Lors de codes d'erreur : éliminez le problème.

Pour démarrer le logiciel DRIVE.EXE, cliquez sur l'icône située sur votre bureau Windows.

DRIVE.EXE permet de travailler en ligne et hors ligne. Nous travaillons en ligne. Pour ce faire, sélectionnez l'interface à laquelle le variateur est connecté.

Les causes les plus


courantes sont :

Le logiciel essaye alors d'établir une connexion vers le variateur. Si aucune connexion n'est établie, le message d'erreur suivant s'affiche.

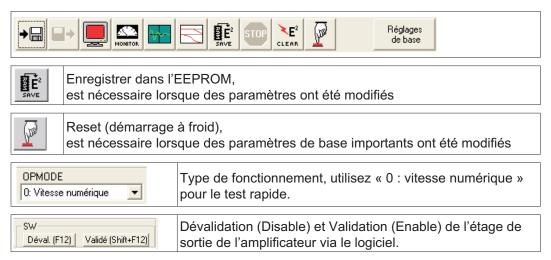
- mauvaise interface sélectionnée
- mauvaise prise de l'amplificateur utilisée
- interface utilisée par un autre logiciel
- alimentation de tension auxiliaire 24 V éteinte
- câble de transmission défectueux ou mal confectionné

Confirmez le message d'erreur. Recherchez et éliminez l'erreur qui empêche la communication. Exécutez à nouveau le logiciel.

Lorsqu'une communication est établie, les paramètres sont lus sur le variateur. Puis, l'écran de démarrage s'affiche.

AVIS

Assurez-vous que l'amplificateur est verrouillé (borne d'entrée HW-Enable X3/15 à 0 V ou ouverte)!

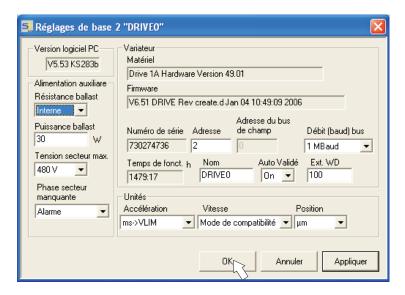

9.3.3 Eléments importants de l'écran

Fonction d'aide

Vous trouverez dans <u>online help</u> des informations détaillées relatives à tous les paramètres pouvant être traités par le variateur.

TROUGHER	Ouvre l'aide en ligne (online help) pour la page d'écran active
Barre de menu ? / Aide en ligne	Ouvre online help avec la table des matières

Barre d'outils



Barre d'état

9.3.4 Réglages de base

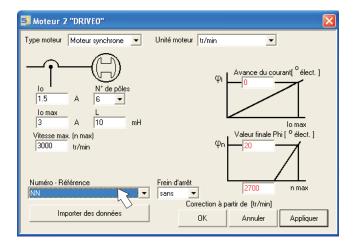
Dans l'écran de démarrage, sélectionnez le bouton « Réglages de base ».

Résistance ballast : sélectionnez "externe".

Puissance ballast : Enregistrez la puissance de la résistance de ballast attachée en watts.

Tension secteur max. : définir la tension secteur nominale présente.

Phase secteur manquante : vous pouvez définir si, lorsqu'une phase secteur est manquante, l'erreur «F19» (entraîne la désactivation de l'étape de sortie) ou l'avertissement «n05» (traité comme un message) s'affiche.


Unités: Accélération, Vitesse, Position

sélectionnez une unité appropriée pour votre application en relation avec la charge déplacée.

Laissez tous les autres champs en l'état pour le test rapide.

Cliquez sur OK. Dans l'écran de démarrage, cliquez sur le bouton « Moteur ».

9.3.5 Moteur (synchrone)

Appuyez sur la touche de fonction F12 (Software Disable).

Type moteur : sélectionnez « Moteur synchrone ». Si vous utilisez un moteur linéaire ou asynchrone, veuillez contacter notre service clientèle.

Numéro – Référence : cliquez sur le champ de liste pour charger le tableau de moteur enregistré dans le variateur. Dans la liste, recherchez et sélectionnez le moteur connecté. Si votre moteur ne figure pas dans la liste, contactez notre service clientèle.

Laissez tous les autres champs en l'état pour le test rapide.

Cliquez sur OK.

Si votre moteur dispose d'un frein intégré, sélectionnez « Oui » ou « Non » dans le cas contraire.

Si l'option « Software Enable » est activée, un avertissement s'affiche. Vous pouvez continuer, mais une fois que l'amplificateur a été redémarré, vous devez vérifier si le frein d'arrêt a été correctement configuré.


Cliquez sur « OK ».

Les paramètres sont chargés dans la mémoire RAM du variateur (cela prend quelques secondes). Puis, vous devez confirmer une nouvelle fois les modifications apportées à la configuration (ou les refuser).

Si vous sélectionnez «Oui», les paramètres sont enregistrés dans l'EEPROM du variateur et une réinitialisation (démarrage à froid) est exécutée. Cette opération dure quelques secondes.

Dans l'écran de démarrage, cliquez sur le bouton « Retour ».

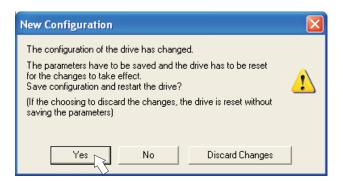
9.3.6 Feedback

Appuyez sur la touche F12 (SW disable) avant de modifier les paramètres de feedback.

Rétroaction:

Sélectionnez le système de rétroaction utilisé.

Laissez tous les autres champs en l'état.


Si l'option « Software Enable » est activée, un avertissement s'affiche. Il est impossible de modifier la configuration. Quittez l'avertissement en confirmant par «OK», appuyez sur la touche F12 (SW Disable) et recommencez la sélection du feedback.

Si tout est en ordre, le chargement des paramètres décrit précédemment pour la sélection du moteur est exécuté.

Si vous sélectionnez «Oui», les paramètres sont enregistrés dans l'EEPROM du variateur et une réinitialisation (démarrage à froid) est exécutée. Cette opération dure quelques secondes.

9.3.7 Enregistrement des paramètres et redémarraget

Vous êtes en train de terminer l'installation de base et avez modifié/configuré des paramètres. Selon les paramètres que vous avez modifiés, le système peut réagir de deux manières :

Des paramètres de configuration importants ont été modifiés

Un avertissement s'affiche, vous invitant à redémarrer l'amplificateur (démarrage à froid). Cliquez sur Oui. Les paramètres sont automatiquement enregistrés dans l'EEPROM du variateur qui est redémarré via une commande de réinitialisation. Cette opération dure quelques secondes. Cela se produit par exemple après modification du type de moteur ou du feedback.

Des paramètres de configuration moins importants ont été modifiés

Aucun avertissement ne s'affiche. Enregistrez manuellement les paramètres dans

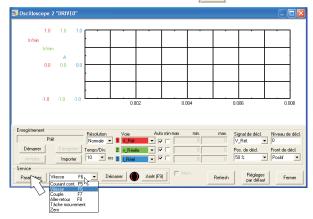
l'EEPROM du variateur. Pour ce faire, cliquez sur l'icône n'est pas nécessaire de redémarrer l'amplificateur.

dans la barre d'outils. Il

Réinitialiser le variateur (Reset)

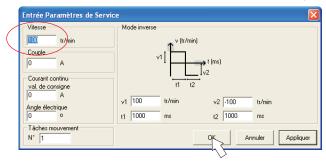
Vous pouvez réinitialiser le variateur manuellement (Reset, par ex. en cas d'erreur).

Cliquez sur l'icône



9.3.8 Mode pas à pas (vitesse constante)

AVIS


Assurez-vous que la position actuelle de la charge permet les mouvements suivants. Dans le cas contraire, l'axe bute contre le commutateur de fin de course du matériel ou contre la butée mécanique. Veillez à ce que, lors d'à-coups ou accélérations, la charge ne cause pas de dégâts.

- Branchez l'alimentation en puissance de l'entraînement.
- Hardware-Enable: +24 V à la borne Enable [X3/15].
- Cliquez sur l'icône Oscilloscope , et la page suivante s'affiche:

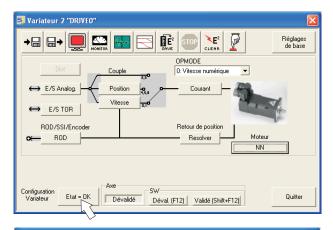
Selectionnez le mode de service « Vitesse F6 », puis cliquez sur

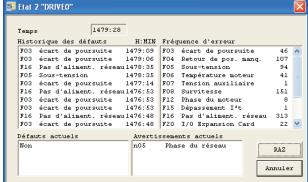
 Saisissez la vitesse souhaitée dans « Vitesse constante ». Le signe placé devant détermine le sens du mouvement.

AVIS

Respectez les exigences en matière de « vitesse réduite » pour votre application !

- Cliquez sur OK.
- Exécutez la fonction Service (bouton Démarrer ou F6).

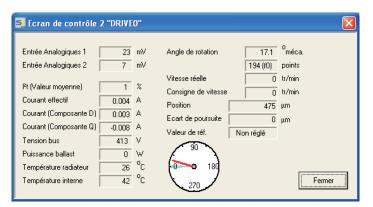

Quittez la demande de sécurité en cliquant sur « OK ».


Le mode Op est défini sur 0 et l'étape de sortie est automatiquement libérée. L'icône de fonction passe à la couleur verte, tant que la fonction est active.

- La fonction est active, jusqu'à ce que vous actionniez le bouton Arrêt ou la touche de fonction F9.
- L'étape de sortie peut être désactivée à l'aide de la touche de fonction F12 (disable).

9.3.9 Etat

Les avertissements et erreurs actuels sont listés sur la page d'écran **Etat**, que vous pouvez afficher via le bouton « Etat » dans l'écran de démarrage. Ce bouton permet d'indiquer le statut actuel du variateur et comprend par conséguent différents libellés.



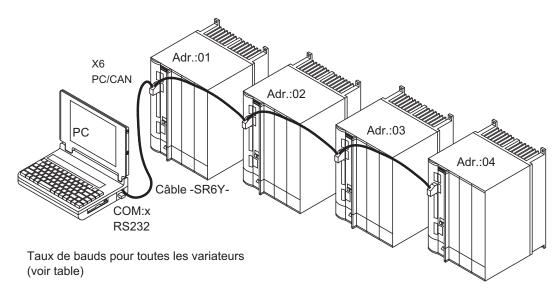
Le bouton de réinitialisation peut être utilisé pour corriger certaines erreurs. Vous trouverez une description des messages d'avertissement et d'erreur dans p.95.

Vous venez de terminer avec succès la mise en service et le test des fonctions de base de l'entraînement.

9.3.10 Moniteur

Cliquez sur l'icône « Moniteur »

Le moniteur affiche toutes les valeurs mécaniques et électriques réelles et importantes de l'entraînement.


9.3.11 Autres possibilités de configuration

Vous trouverez des indications détaillées relatives aux autres réglages dans l'aide en ligne, ainsi que dans les références de commandes intégrées.

9.4 Systèmes à plusieurs axes

Six transistors-onduleurs peuvent être raccordés à l'ordinateur au moyen d'un câble spécial:

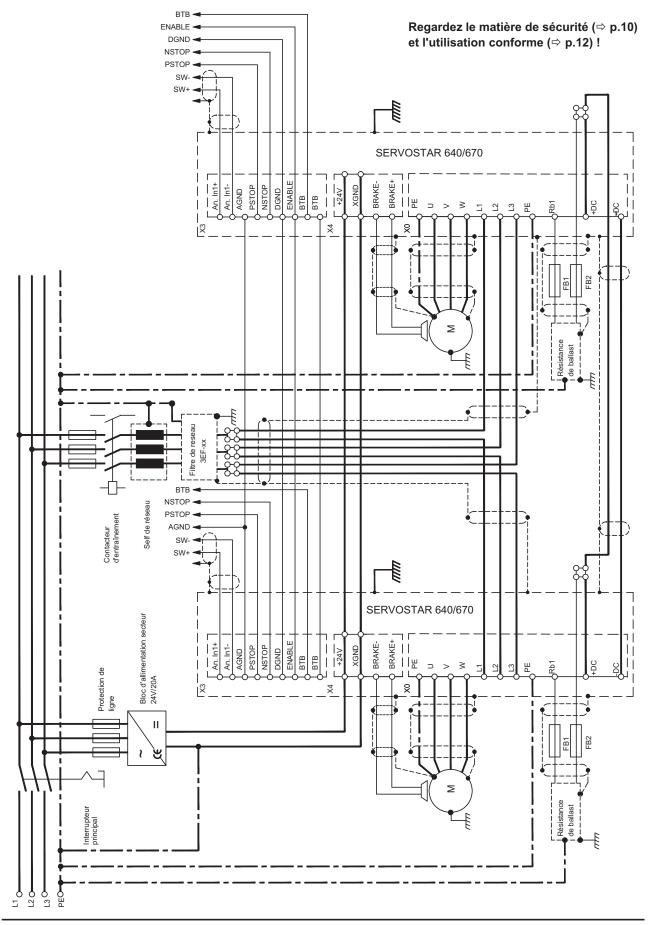
Type de câble -SR6Y- (pour 4 variateurs) ou -SR6Y6- (pour 6 variateurs)

Si vous êtes raccordés à un seul variateur, vous pouvez à présent sélectionner et paramétrer tous les variateurs via les adresses de station en vous aidant du manuel d'opération.

9.4.1 Adresse de station pour CAN bus

Lors de la mise en service, il est recommandé de régler au préalable les adresses de station de chaque variateur et le taux de bauds pour la communication via le clavier de la platine (\Rightarrow p.94).

9.4.2 Taux de bauds pour CAN bus

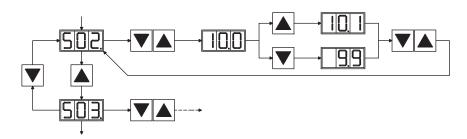

INFORMATION

Après modification de l'adresse de station et du taux de bauds, arrêtez et remettez en marche l'alimentation en tension auxiliaire de 24 V du variateur.

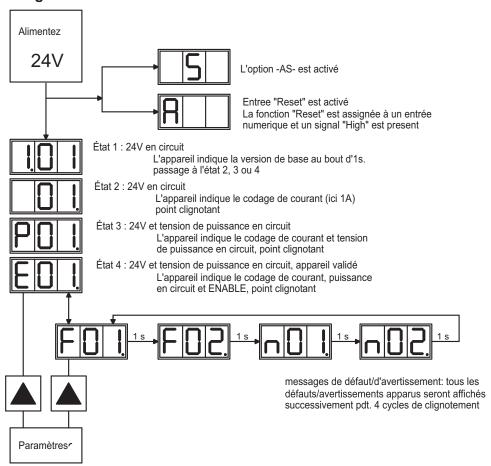
Codage du taux de bauds sur le tableau lumineux :

Codage	taux de bauds en kBits/s	Codage	taux de bauds en kBits/s
0	10	5	250
1	20	6	333
2	50	7	500
3	100	8	666
4	125	9	800
		10	1000

9.4.3 Exemple de raccordement du système à plusieurs axes


9.5 Utilisation des touches / Affichage DEL

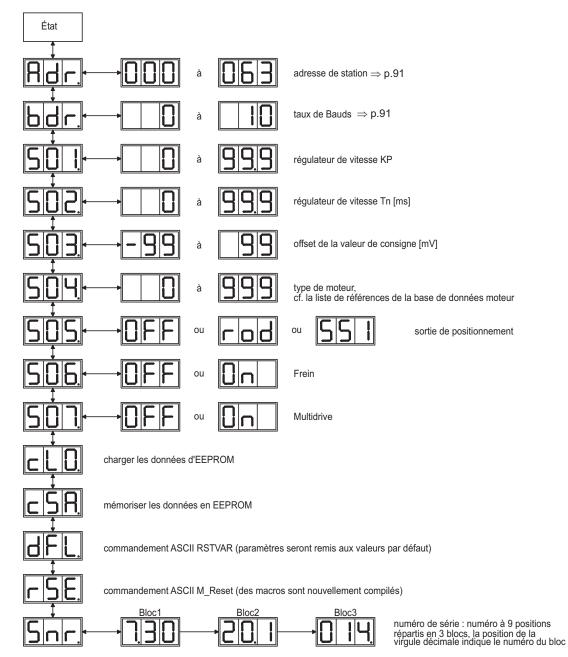
La structure du programme de commande est représentée à droite et la commande avec le clavier sur le platine avant en bas. En cas normal, le SERVOSTAR ne met que le menu standard à votre disposition. Si vous souhaitez utiliser le variateur via le menu détaillé, vous devez alors maintenir la touche droite enfoncée pendant la mise en route de l'alimentation électrique en 24 V.


9.5.1 Utilisation

Les deux touches vous permettent d'exécuter les fonctions suivantes :

Symbole sur le touche	Fonction
	appuyer une fois : un point de menu vers le haut, incrémentation d'1 du chiffre appuyer rapidement deux fois successivement : incrémentation de 10 du chiffre
	appuyer une fois : un point de menu vers le bas, décrémentation d'1 du chiffre appuyer rapidement deux fois successivement : décrémentation de 10 du chiffre
	maintenir la touche de droite enfoncée puis appuyer en plus sur la touche de gauche : pour l'entrée numérique, fonction Return (Entrée)

9.5.2 Affichage d'état



9.5.3 Structure du menu standard

9.5.4 Structure du menu détaillé

Pendant la mise sous tension du 24V tension, tenir la clé droite.

9.6 Messages de default

Les défauts qui apparaissent sont visualisés codés par un numéro de défaut sur l'affichage DEL placé sur la platine avant. Tous les messages de défaut provoquent l'ouverture du contact prêt à fonctionner BTB/RTO et à l'inactivation de l'étage final de variateur (le moteur devient sans couple). Si un frein d'arrêt du moteur est installé, il est activé.

Numéro	Désignation	Signification
E/S/A/P	Messages d'état	Message d'état, pas d'erreur, voir p. 93
	Message d'état	Variateur met à jour la configuration de démarrage
-	Message d'état	Message d'état, pas d'erreur, mode de programmation
F01*	Température du radi-	Température du radiateur trop élevée
101	ateur	Valeur limite réglée sur 80°C par le constructeur
F02*	Surtension	Surtension dans le circuit intermédiaire
F03*	Défaut de poursuite	Valeur limite dépendant de la tension secteur Message de la régulateur de position
F04	Défaut rétroaction	Rupture de câble, court-circuit, défaut de terre
1 04		Soustension dans circuit intermédiaire
F05*	Soustension	Valeur limite réglée sur 100 V par le constructeur
	_ , , , ,	Température du moteur trop élevée
F06	Température du moteur	Valeur limite réglée sur 145°C par le constructeur
F07	Tension auxiliaire	Tension auxiliaire interne non OK
F08*	Survitesse	Le moteur s'emballe, vitesse élevée inadmissible
F09	EEPROM	Défaut somme de contrôle
F10	Flash-EPROM	Défaut somme de contrôle
F11	Frein	Rupture de câble, court-circuit, défaut de terre
F12	Phase moteur	Câble moteur phase coupé
F13*	Température intérieure	Température intérieure trop élevée
F14	Etage final	défaut dans l'étage final de puissance
F15	I ² t max.	Valeur maximale l²t dépassée
F16*	Mains-RTO	2 ou 3 phases manquantes dans le réseau
F17	Convertisseur A/D	Erreur de conversion analogique-numérique, souvent causée par de très fortes perturbations électromagnétiques
F18	Ballast	Erreur de ballast ou réglage incorrect
F19*	Phase de réseau	Omission d'une phase d'alimentation (interruptible pour le fonctionnement en deux phases)
F20	Erreur Slot	Erreur matérielle de la carte d'expansion
F21	Erreur de manipulation	Erreur logiciel de la carte d'expansion
F22	Contact de terre	Contact de terre d'une phase moteur
F23	CAN Bus off	Interruption CAN Bus
F24	Avertissement	L'affichage d'avertissement est traité comme un défaut
F25	Erreur de commutation	Erreur de commutation
F26	Fin de course	Défaut de course de référence (le fin de course a été atteint)
F27	Verrouillage -AS-	Erreur lors de l'utilisation du veruillage -AS-, les entrées AS-ENABLE et ENABLE ont été réglées en même temps
F28	Trajectoire externe	Saut de valeur de consigne, pour les valeurs par défaut de la trajectoire de position externe, dépassant la valeur maximale autorisée.
F29	Erreur Slot	Dépend de la carte d'extension, voir l'aide en ligne
F30	Emergency time out	Timeout arrêt d'émergence
F31	Macro	Erreur de programme macro
F32	Erreur du système	Le software système ne réagit pas correctement

^{* =} Ces messages d'erreur peuvent être annulés sans remise à zéro grâce à la commande ASCII CLRFAULT. Si une de ces anomalies seulement existe et que le bouton RESET ou la fonction M/A RESET est utilisée, seule la commande CLRFAULT sera exécutée.

INFORMATION

Vous trouverez de plus amples informations sur les messages dans la référence objet ASCII (online help), voir paramètre <u>ERRCODE</u>.

9.7 Messages d'alarme

Des incidents n'entraînant pas l'arrêt de l'étage final du variateur (le contact BTB reste fermé) sont affichés sur le tableau lumineux de la platine via un numéro d'alarme codé.

Numéro	Désignation	Signification			
E/S/A/P	Messages d'état	Message d'état, pas d'erreur, voir p. 93			
	Message d'état	Variateur met à jour la configuration de démarrage			
-	Message d'état	Message d'état, pas d'erreur, mode de programmat on			
n01	I²t	Seuil de signalisation l2t dépassé			
n02	Puissance de ballast	e ballast Puissance réglée atteinte			
n03*	FError Fenêtre réglée d'erreur de poursuite dépassée				
n04*	Contrôle de fonctionnement	Contrôle de fonctionnement activé (bus de champ)			
n05	Phase de réseau	Omission d'une phase de réseau			
n06*	Fin de course 1 du logiciel	Fin de course 1 du logiciel descendre au-dessous			
n07*	Fin de course 2 du logiciel	Fin de course 2 du logiciel dépassé			
n08	Commande de démarrage	Une commande de démarrage erronée a été initialisée			
n09	Pas de point de référence	Absence de point de référence lors de l'initialisation de la commande de démarrage			
n10*	PSTOP	Fin de course PSTOP actionné			
n11*	NSTOP	Fin de course NSTOP actionné			
n12	Valeurs par défaut moteur char- gées	Uniquement ENDAT ou HIPERFACE® : différents numéros de moteurs enregistrés dans le codeur et dans le variateur, les valeurs moteur par défaut ont été chargées			
n13*	Avertissement Slot	Aucune alimentation 24 V de la carte d'extension d'entrée/de sortie			
n14	SinCos-Feedback	Commutation SinCos (wake & shake) non achevée, défaut acquitté lorsque le variateur a été débloqué et le wake & shake a été effectué			
n15	Erreur de tableau	Erreur vitesse/courant tableau INXMODE 35			
n16	Avertissement de sommes	Avertissement de sommes pour n17 jusqu'à n31			
n17	Feldbus Sync	La synchronisation est générée lorsque l'entraîne- ment est défini sur Synchronisation (SYNCSRC) mais n'est pas synchronisé (par ex. CAN-Sync)			
n18	Dépassement multi-tours	Le nombre maximum de tours a été dépassé pour le codeur multi-tours			
n19	La rampe du bloc de mouvement a été limitée	Dépassement de la plage de valeurs pour les don- nées de bloc de mouvement			
n20	Données GMT	Données " Graphical Motion Task " erronées			
n21	Avertissement du programme API	Signification propre au programme			
n22	Température moteur dépassée	L'avertissement permet à l'utilisateur d'entreprendre les actions appropriées avant que l'erreur de " sur- chauffe moteur " n'entraîne l'arrêt du régulateur			
n23-n31	réservé	réservé			
n32	Firmware Betaversion	La version informatique entreprise Beta n'est pas autorisée			

^{* =} Ces messages d'erreur provoquent une immobilisation provoquée de l'entraînement (Freinage avec rampe de secours)

INFORMATION Vous trouverez de plus amples informations sur les messages dans la référence objet ASCII (online help), voir paramètre STATCODE.

9.8 Elimination des défauts

En fonction des spécifications de votre installation, différentes causes peuvent être à la source du défaut apparu. En présence de systèmes multiaxes, d'autres causes d'erreur cachées peuvent apparaître.

AVIS

Remédiez aux erreurs et incidents en respectant les normes de sécurité au travail. Seul un personnel dûment formé et qualifié peut procéder au dépannage.

INFORMATION

Vous trouverez des informations relatives à la réparation des anomalies dans le paragraphe « Elimination de dérangements» de l'aide en ligne (online help).

Notre Département Applications est à votre disposition pour vous aider en cas de problèmes.

Défaut	Causes probables du défaut	Remède
Message de dé-	 utilisation d'un câble pas correcte 	 utiliser un câble modem zéro
faut	 le câble n'est pas enfiché sur le 	 enficher le câble sur l'emplace-
Dérangement de	bon emplacement	ment correct
communication	 mauvaise interface PC sélectionnée 	 sélectionner l'interface correcte
Le moteur ne tourne pas	 le variateur n'est pas validé coupure du câble de val. de cons. les phases moteur permutées le frein n'est pas desserré le système est mécaniquement bloqué le nombre de pôles du moteur n'est pas correctement réglé la rétroaction n'est pas correctement réglée 	 appliquer le signal ENABLE vérifier le câble de va. de cons. posez les phases moteur correctement vérifier la commande d'excitation du frein vérifier la mécanique régler le paramètre "nombre de pôles du moteur" régler la rétroaction correctement
Le moteur vibre	 l'amplification est trop élevée (régulateur de vitesse) le blindage du câble de rétroaction est coupé AGND n'est pas câblée 	diminuer KP (régulateur de vitesse) remplacer le câble de rétroaction relier l'AGND à la CNC-GND
Le servosystè- me signale un défaut de pour- suite	 Irms ou resp. Ipeak réglé trop faible rampe de valeur de consigne trop grande 	 augmenter I_{rms} ou resp. I_{peak} (observez les données moteur !) diminuer la Rampe SW +/-
Le moteur de- vient trop brû- lant	 réglage trop important de I_{rms}/I_{peak} 	— diminuer I _{rms} /I _{peak}
Le servosystè- me est trop lâ- che	 KP (rég. de vitesse) trop faible Tn (régulateur de vitesse) trop grande PID-T2 trop grande T-tachy trop grande 	augmenter KP (rég. de vitesse) Tn (régulateur de vitesse), valeur implicite du moteur réduire PID-T2 réduire T-tachy
Le servosystè- me ne tourne pas en souples- se	 KP (régulateur de vitesse) trop grande Tn (régulateur de vitesse) est trop faible PI D-T2 trop faible T-tachy trop faible 	 réduire KP (régulateur de vitesse) Tn (régulateur de vitesse), valeur implicite du moteur augmenter PID-T2 augmenter T-tachy
L'arbre dérive à valeur de con- signe=0V	 l'offset pour la valeur de consigne prédéfinie analogique n'est pas correctement équilibré l'AGND n'est pas reliée à la CNC-GND de l'automate programmable 	équilibrer l'offset VC (Analog I/O) relier l'AGND et la CNC-GND

10 Cartes d'expansion

Vous trouverez des informations sur la disponibilité et les numéros pour passer commande à la page 115.

10.1 Guide d'installation des cartes d'expansion

- Dévissez le couvercle de l'emplacement des options à l'aide d'un tournevis approprié.
- S'assurer qu'aucune petite pièce (vis ou autres) ne chute dans l'emplacement ouvert.

- Engager la carte d'extension dans la fente et, sans la basculer, entre les rails de guidage prévus à cet effet.
- Enfoncer la carte d'extension à fond dans la fente jusqu'à ce que le recouvrement frontal vienne au contact de la patte de fixation. Le contact sûr de la connexion est alors assuré.
- Visser les vis du recouvrement frontal dans les alésages filetés de la patte de fixation.

10.2 Carte d'expansion -l/O-14/08

Ce chapitre décrit les cartes d'expansion d'entrée/sortie -I/O-14/08-. La description ne porte toutefois que sur les caractéristiques supplémentaires que la carte d'expansion ajoute au SERVOSTAR 640/670. A la livraison, la carte d'expansion est enfichée et vissée sur l'emplacement du variateur, si le variateur a été commandé avec une carte d'expansion. La carte -I/O-14/08- permet en outre de disposer de 14 entrées numériques et de 8 sorties numériques supplémentaires. La fonction des entrées et des sorties est définie à l'avance. Les entrées/sorties sont utilisées pour lancer des instructions de mouvement mémorisées dans le variateur et pour exploiter les informations transmises par le régulateur de position intégré sur la commande hiérarchiquement supérieure. La fonction des entrées et des sorties de signalisation correspond aux fonctions pouvant être affectées aux entrées/sorties numériques du connecteur X3 du S640/670. Toutes les entrées et sorties sont isolées électriquement par optocoupleurs et présentent donc un potentiel flottant par rapport au variateur.

10.2.1 Vue de face

10.2.2 Données techniques

Entrées de commande	24V / 7mA , compatible automate programmable
Sorties de signalisation	24V / max. 500mA , compatible automate programmable
Entrées d'alimentation con- formes EN601131	24V (1836V) / 100mA plus courant additionnel des sorties (en fonction du circuit d'entrée de la commande) La tension d'alimentation de 24 V CC doit être disponible à partir d'une source galvaniquement isolée (p. ex. transformateur d'isolation).
Protection (externe)	4 AT
Connecteur	MiniCombicon, 12 broches, codé sur PIN1 ou 12
Câble	Données, jusqu'à 50m de long : 22 x 0,5mm², non blindé, Alimentation - 2 x 1mm², tenir compte des chutes de tension
Délai d'attente entre 2 tâches de mouvement	dépend du temps de réaction de la commande
Délai d'adressage (min.)	4ms
Temporisation au démarrage (max.)	2ms
Temps de réaction, sorties numériques	max. 10ms

10.2.3 Diodes électroluminescentes

Deux diodes électroluminescentes sont disposées à côté des bornes de la carte d'expansion. L'allumage de la DEL signale la présence de la tension d'alimentation de 24V destinée à la carte d'expansion. L'allumage de la DEL rouge signale l'existence d'un défaut sur l'une des sorties de la carte d'expansion (surcharge des composants de commutation ou court-circuit).

10.2.4 Sélectionner le n° de profil de mouvement

N° de profil de mouvement	A7	A6	A5	A4	A3	A2	A1	A0
binaire 1010 1110	1	0	1	0	1	1	1	0
décimal 174	128	-	32	_	8	4	2	-

10.2.5 **Affectation des connecteurs**

Connec	Connecteur X11A						
Borne	Dir	Fonction	Description				
1	Entrée	A0	N° de profil de mouvement, LSB				
2	Entrée	A1	N° de profil de mouvement, 2 ¹				
3	Entrée	A2	N° de profil de mouvement, 2 ²				
4	Entrée	A3	N° de profil de mouvement, 2 ³				
5	Entrée	A4	N° de profil de mouvement, 2 ⁴				
6	Entrée	A5	N° de profil de mouvement, 2 ⁵				
7	Entrée	A6	N° de profil de mouvement, 2 ⁶				
8	Entrée	A7	N° de profil de mouvement, MSB				
9	Entrée	Référence	Interrogation du commutateur de référence. Lorsqu'une entrée numérique est utilisée comme entrée de référence sur l'automate de base, l'entrée correspondante de la carte d'expansion n'est pas traitée.				
10	Entrée	FError_clear	Effacement d'un avertissement d'erreur de poursuite (n03) ou d'une surveillance de déclenchement (n04)				
11	Entrée	Start_MT Next	L'instruction suivante définie dans le profil de mouvement est émise par le réglage "Démarrage par I/O". La position de destination du profil de mouvement en cours doit être atteinte avant que l'instruction de démarrage du mouvement suivant puisse être émise. Le profil de mouvement suivant peut également être lancé par une entrée numérique définie de l'automate de base.				
12	Entrée	Start_Jog v=x	Démarrage du mode de fonctionnement de réglage "Vitesse constante". "x" est la vitesse enregistrée dans le variateur pour la fonction VITESSE CONSTANTE. Un flanc montant lance le mouvement, un flanc descendant l'interrompt.				

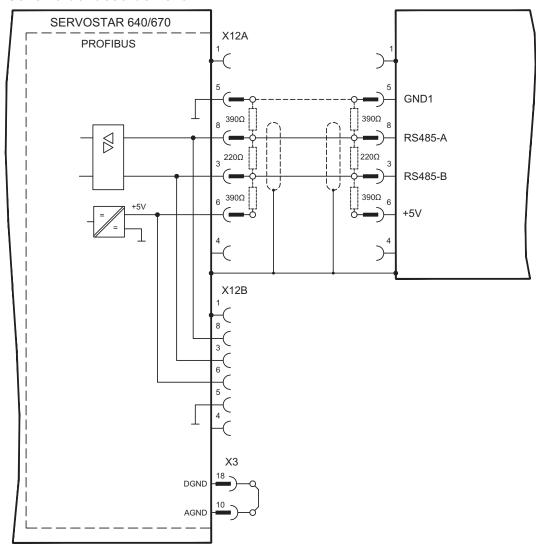
Conne	Connecteur X11B					
1	Entrée	MT Restart	Poursuit le mouvement précédemment interrompu. Le mouvement peut aussi être poursuivi par une entrée numér-			
	Lina	<u></u>	ique correspondante définie sur l'automate de base.			
2*	Entrée	Start_MT I/O	Démarrage du mouvement adressé par A0-A7. La fonction numérique de même nom de l'automate de base démarre le mouvement adressé par les entrées numériques de l'automate de base.			
3	Sortie	InPos	L'atteinte de la position de destination (fenêtre In-Position) d'un mouvement est signalée par l'émission d'un signal de niveau logique haut. Une rupture de câble n'est pas détectée.			
4	Sortie	Next-InPos	Le démarrage de chaque mouvement dans une séquence auto- matique constituée d'une succession de mouvements est signa- lé par l'inversion du signal de sortie. Lors du démarrage du pre- mier mouvement au sein même de la suite de mouvements provoque l'émission d'un signal de niveau logique bas sur la sor- tie. La forme de cette signalisation peut être librement choisie par des instructions ASCII.			
		PosReg0	Ne peut être réglé que par des instructions ASCII.			
5	Sortie	FError	La sortie de la fenêtre d'erreur de poursuite réglée est signalée par l'émission d'un signal de niveau logique bas.			
6	Sortie	PosReg1				
7	Sortie	PosReg2	La fonction réglée du registre de position correspondant est sig-			
8	Sortie	PosReg3	nalée par l'émission d'un signal de niveau logique haut.			
9	Sortie	PosReg4				
10	Sortie	PosReg5	Ne peut être réglé que par des instructions ASCII.			
11	Alim.	24V DC	Tension d'alimentation des signaux de sortie			
12	Alim.	I/O-GND	Terre numérique (GND) de la commande			

10.2.6 Schéma de raccordement

INFORMATION AGND et DGND (connecteur X3) doivent être strappés!

10.3 Carte d'expansion -PROFIBUS-

Ce chapitre décrit la carte d'expansion PROFIBUS de l'automate SERVOSTAR 640/670. Les informations relatives à l'étendue des fonctions et le protocole de logiciel figurent dans la description "Profil de communication PROFIBUS DP"..


10.3.1 Vue de face

10.3.2 Technique de raccordement

Le choix des câbles, la disposition des câbles, le blindage, le connecteur de raccordement de bus, la terminaison du bus et les temps de parcours sont décrits dans les "Directives de montage PROFIBUS-DP/FMS" de l'organisation PNO des utilisateurs du PROFIBUS.

10.3.3 Schéma de raccordement

INFORMATION AGND et DGND (connecteur X3) doivent être strappés!

10.4 Carte d'expansion -SERCOS-

Ce chapitre décrit la carte d'expansion SERCOS pour l'automate SERVOSTAR 640/670. Les informations relatives à l'étendue des fonctions et le protocole de logiciel figurent dans notre descriptif "IDN Reference Guide SERCOS".

10.4.1 Vue de face

10.4.2 Diodes électroluminescentes

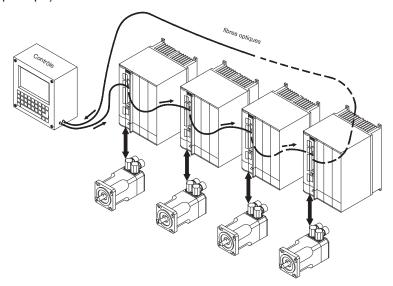
indique si les télégrammes SERCOS sont correctement reçus. Dans la phase de RT communication 4, cette DEL doit scintiller faiblement dans la mesure où des télégrammes sont reçus cycliquement. indique si des télégrammes SERCOS sont émis. Dans la phase de communication finale 4, cette DEL doit scintiller faiblement dans la mesure où des télégrammes sont émis cycliquement. Vérifier les adresses de station dans la commande et dans le variateur lorsque : TT - la DEL ne s'allume jamais en phase SERCOS 1 ou - lorsque l'axe correspondant ne peut pas être mis en service, bien que la DEL RT s'allume cycliquement. indique une communication SERCOS défectueuse ou perturbée. Lorsque cette DEL émet une lumière vive, la communication est fortement perturbée, voire inexistante. Vérifier la vitesse de transmission SERCOS sur la commande et dans le variateur (BAUDRATE) ainsi que le branchement de la fibre optique. ERR | Si cette DEL scintille faiblement, cela indique une communication SERCOS légèrement perturbée, notamment que la puissance d'émission optique n'est pas cor-

10.4.3 Technique de raccordement

N'utiliser que des composants SERCOS conformes à la norme SERCOS IEC 61491 pour le raccordement de la fibre optique.

rectement adaptée à la longueur de la fibre optique. Vérifier la puissance d'émission optique de la station SERCOS physique précédente. La puissance d'émission des variateurs peut se régler dans le page d'ecran SERCOS par adaptation à la longueur du câble sur le paramètre Longueur de la fibre optique.

Données de réception


La fibre optique de transmission des données de réception pour les moteurs dans la structure de la boucle se raccorde sur l'embase X13 au moyen d'un connecteur F-SMA.

Données d'émission

Brancher la fibre optique de transmission des donnés de sortie sur l'embase X14 à l'aide d'un connecteur F-SMA.

10.4.4 Schéma de raccordement

Réalisation du système de bus SERCOS en boucle à l'aide de fibres optiques (schéma principe).

INFORMATION

AGND et DGND (connecteur X3) doivent être strappés!

10.4.5 Modification de l'adresse de station

L'adresse du variateur peut être réglée sur une valeur comprise entre 0 et 63. L'adresse 0 permet d'affecter le entraînement en tant qu'amplificateur dans la boucle SERCOS.

Touches situées sur la face avant du variateur

Vous pouvez également modifier l'adresse SERCOS en utilisant les touches situées sur la face avant du SERVOSTAR 640/670 (voir p.94).

Logiciel de mise en service

Vous pouvez également modifier l'adresse à l'aide du logiciel de mise en service, page d'écran « CAN/Bus de terrain». Pour plus d'informations, consultez l'aide en ligne. Dans la page d'affichage « Terminal », vous pouvez également taper la commande **ADDR #**, où # correspond à la nouvelle adresse du variateur.

10.4.6 Modification de la vitesse de transmission et de la puissance optique

Si la vitesse de transmission n'est pas correctement définie, il n'y a pas de communication. Le paramètre **SBAUD** # vous permet de régler la vitesse de transmission, # correspondant à cette dernière. Lorsque la puissance optique n'est pas correctement réglée, des erreurs surviennent lors de la transmission des télégrammes et la DEL rouge située sur le entraînement s'allume. Dans le cas d'une communication normale, les DEL vertes signalant l'envoi et la réception de télégrammes clignotent rapidement, donnant ainsi l'impression que les DEL sont allumées. Le paramètre **SLEN** # vous permet de définir la puissance optique d'un câble à fibres optiques standardisé de 1 mm², # correspondant à la longueur du câble en mètres.

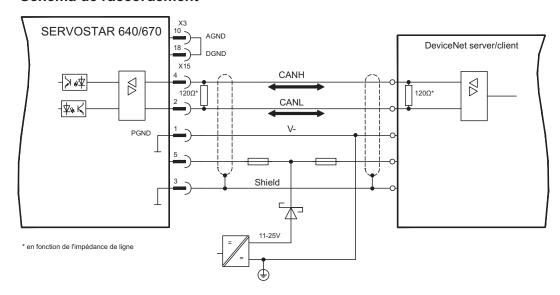
;	SBAUD	SLEN	
2	2 MBaud	0	connexion très courte
4	4 MBaud	1< 15	Longueur de la connexion avec un câble en plastique de 1 mm²
8	8 MBaud	15<30	Longueur de la connexion avec un câble en plastique de 1 mm²
16	16 MBaud	≥ 30	Longueur de la connexion avec un câble en plastique de 1 mm²

Vous pouvez également modifier ces paramètres à l'aide du logiciel de mise en service, page d'écran « SERCOS ». Pour plus d'informations, consultez le manuel « Logiciel de mise en service » ou bien l'aide en ligne. Dans la page d'affichage « Terminal », vous pouvez également taper les commandes **SBAUD #** et **SLEN #**.

10.5 Carte d'expansion - DEVICENET -

Ce documentation décrit la carte d'expansion DeviceNet de variateur SERVOSTAR 640/670.

Les informations relatives à l'étendue des fonctions et le protocole logiciel figurent dans le manuel relatif au profil de communication DeviceNet.


10.5.1 Vue de face

10.5.2 Technique de raccordement

Le choix des câbles, le câblage, le blindage, le connecteur, la terminaison de bus et les temps de fonctionnement sont décrits dans le document "Spécification DeviceNet, tome I, II", publié par l'ODVA.

10.5.3 Schéma de raccordement

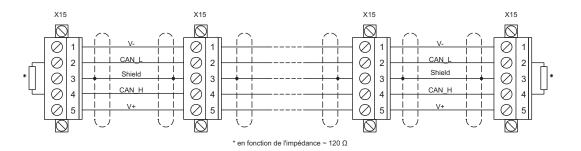
INFORMATION AGND et DGND (connecteur X3) doivent être strappés!

10.5.4 Combinaison LED de module/état du network

LED	Signification :
éteinte	L'appareil n'est pas en ligne. - L'appareil n'a pas encore terminé le test Dup_MAC_ID. - L'appareil n'est peut-être pas branché.
verte	L'appareil fonctionne normalement, est en ligne et les connexions sont établies L'appareil est subordonné à un maître.
verte cligno-tante	L'appareil fonctionne normalement, est en ligne et les connexions ne sont pas établies. - L'appareil a réussi le test Dup_MAC_ID et est en ligne, mais les connexions aux autres noeuds ne sont pas établies. - Cet appareil n'est pas subordonné à un maître. - Configuration absente, incomplète ou incorrecte.
cligno- tante	Erreur réparable et/ou au moins une connexion E/S est en veille.
rouge	 Une erreur impossible à corriger est survenue sur l'appareil ; il devra peut-être être remplacé. Appareil de communication défaillant. L'appareil a constaté une erreur qui empêche la communication avec le réseau (p. ex. double ID MAC ou BUSOFF).

10.5.5 Réglage de l'adresse de station (adresse de l'appareil)

- Régler le commutateur rotatif situé sur la face avant de la carte d'expansion sur une valeur comprise entre 0 et 63. Chaque commutateur représente un chiffre décimal.
 Pour ajuster l'adresse 10 du variateur, définissez MSD sur 1 et LSD sur 0.
- Régler le commutateur rotatif situé sur la face avant de la carte d'expansion sur une valeur supérieure à 63. Vous pouvez maintenant ajuster l'adresse de la station à l'aide des commandes ASCII DNMACID x, SAVE, COLDSTART, « x » correspondant à l'adresse de la station.
- Régler le commutateur rotatif situé sur la face avant de la carte d'expansion sur une valeur supérieure à 63. Régler maintenant l'adresse sur l'objet DeviceNet (classe 0x03, attribut 1), normalement au moyen d'un outil de mise en service DeviceNet. Si la valeur est définie, tous les paramètres du moteur sont conservés dans la mémoire non volatile. Redémarrer le variateur une fois la modification effectuée.


10.5.6 Réglage de la vitesse de transmission

- Régler le commutateur rotatif de la vitesse de transmission, situé sur la face avant de la carte d'option, sur une valeur comprise entre 0 et 2 ; 0 = 125 Kbit/s, 1 = 250 Kbit/s, 2 = 500 Kbit/s.
- Régler le commutateur rotatif situé sur la face avant de la carte d'option sur une valeur supérieure à 2. Vous pouvez maintenant ajuster la vitesse de transmission à l'aide des commandes du terminal DNBAUD x, SAVE, COLDSTART, « x » correspondant à 125, 250 ou 500.
- Régler le commutateur rotatif situé sur la face avant de la carte d'option sur une valeur supérieure à 2. Régler maintenant la vitesse de transmission à l'aide de l'objet DeviceNet (classe 0x03, attribut 2) sur une valeur comprise entre 0 et 2, normalement au moyen d'un outil de mise en service DeviceNet. Si la valeur est définie, tous les paramètres sont conservés dans la mémoire non volatile. Redémarrer le moteur une fois la modification effectuée.

10.5.7 Câble de bus

Conformément à la norme ISO 898, vous devriez utiliser un câble de bus avec une impédance caractéristique de 120Ω . L'augmentation de la vitesse de transmission permet de réduire la longueur de câble à utiliser pour une communication fiable. Les valeurs suivantes que nous avons mesurées peuvent servir de valeurs de référence. Elles ne devraient cependant pas être interprétées comme des valeurs limites.

Caractéristique générale	Spécification
Débit	125 Kbit, 250 Kbit, 500 Kbit
Distance avec le rail col- lecteur épais	500 m pour 125 KBaud 250 m pour 250 KBaud 100 m pour 500 KBaud
Nombre de noeuds	64
Signalisation	CAN
Modulation	Bande passante de base
Couplage multimédia	Mode de réception/terme différentiel couplé en continu
Isolation	500 V (Option : optocoupleur, côté noeud de transceiver)
Impédance d'entrée dif- férentielle type (état ré- cessif)	Shunt C = 5pF Shunt R = $25K\Omega$ (sous tension)
Impédance d'entrée dif- férentielle min. (état ré- cessif)	Shunt C = 24pF + 36 pF/m de la dérivation stable fixée Shunt R = $20K\Omega$
Gamme de tensions ma- ximale absolue	-25 V à +18 V (CAN_H, CAN_L). Les tensions de CAN_H et CAN_L appliques à la broche de masse CI de transceiver. La valeur de cette tension est plus élevée que celle de la borne V, qui correspond à la baisse de tension de la diode à barrière de Schottky (max. 0,6 V).

Mise à la terre :

pour éviter des boucles de terre, le réseau DeviceNet ne doit être mis à la terre qu'en un seul point. Les circuits de commutation de la couche physique de tous les appareils sont rapportés au signal de bus V. Le raccordement à la masse s'effectue via l'alimentation en courant du bus. La conduction électrique entre la borne V et la terre ne peut s'effectuer par l'intermédiaire d'aucun autre appareil qu'une alimentation en courant.

Topologie du bus :

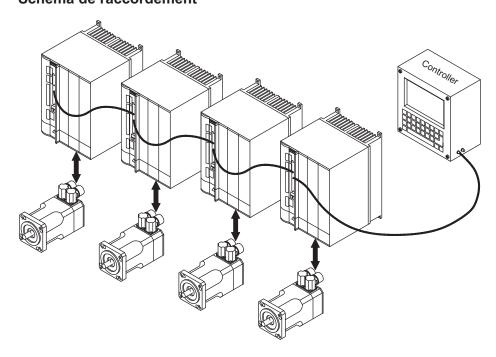
le support DeviceNet dispose d'une topologie de bus linéaire. Des résistances de terminaison sont requises de chaque côté du câble de raccordement. Des dérivations allant jusqu'à 6 m sont autorisées de manière à permettre le raccordement d'au moins un noeud.

Résistances de terminaison :

pour DeviceNet, il faut installer une résistance de terminaison de chaque côté du câble de raccordement. Données de résistance : 120Ω , 1 % film métallique, 1/4 W

10.6 Carte d'expansion -EtherCat-

Ce chapitre décrit la carte d'expansion EtherCAT.


10.6.1 Vue de face

10.6.2 LEDs

LED	Fonction
ERROR	vacille = erreur tout en initialisant clignote = configuration inadmissible clignote une fois = changement non sollicité d'état clignote deux fois = Watchdog Timeout *hors circuit = aucune erreur
RUN	allumé = Le dispositif est dans l'état OPERATIONAL clignote = Le dispositif est dans l'état PRE-OPERATIONAL clignote une fois = Le dispositif est dans l'état SAFE-OPERATIONAL hors circuit = Le dispositif est dans l'état INIT
ACT IN	allumé = lié, mais non actif au X20A (in) vacille = lié et actif au X20A (in) hors circuit = ne pas lié au X20A (in)
ACT OUT	allumé = lié, mais non actif au X20B (out) vacille = lié et actif au X20B (out) hors circuit = ne pas lié au X20B (out)

10.6.3 Schéma de raccordement

INFORMATION AGND et DGND (connecteur X3) doivent être strappés!

10.7 Carte d'expansion -SYNQNET-

Ce chapitre décrit la carte d'expansion SyngNet.

10.7.1 Vue de face

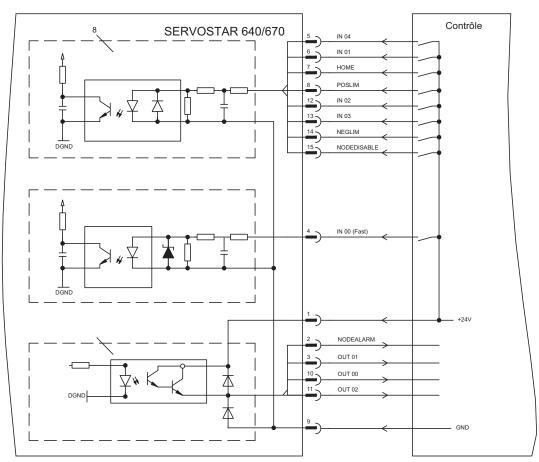
10.7.2 NODE ID

Avec ces commutateurs hexadécimaux vous pouvez placer les bytes significatifs principaux (MS) et bas (LS) de l'identification de Node seperately. SynqNet n'exige pas une adresse pour l'opération correcte dans le réseau, toutefois dans des quelques machines ceci peut être une manière commode d'identifier des options de construction au programme d'application.

10.7.3 Node DEL Table

DEL#	Nom	Fonction
DEL1 wort	LINK IN	ON = receive valid (IN port)
DEL1, vert	LINK_IIN	OFF= not valid, power off or reset.
		ON = network cyclic
DEL2, jaune	CYCLIC	BLINK = network not cyclic
		OFF = power off or reset
DEL 2 years	LINIZ OLIT	ON = receive valid (OUT port)
DEL3, vert	LINK_OUT	OFF = not valid, power off or reset
		ON = repeater on, network cyclic
DEL4, jaune	REPEATER	BLINK = repeater on, network not cyclic
		OFF = repeater off, power off or reset

10.7.4 Communication SynqNet, Connecteur X21B/C (RJ-45)


Raccordement au réseau de SynqNet par connecteurs RJ-45 (IN et OUT ports) avec les LED intégrées.

10.7.5 Entrées/sorties numériques, X21A (SubD 15 pôles, femelle)

Entrées (In): 24V (20...28V), optiquement d'isolement, une entrée vite (pin 4) Sorties (Out): 24V, optiquement d'isolement, Darlington driver

Tabl	Tableau de l'affectation des bornes du connecteur X21A (SubD 15 pôles)						
Pin	Туре	pe Description		Pin	Туре	Descriptio	n
1	In	+24V	alimentation	9	In	GND	alimentation
2	Out	NODEALARM	indique un problème avec le node	10	Out	OUT_00	sortie numérique
3	Out	OUT_01	sortie numérique	11	Out	OUT_02	sortie numérique
4	In	IN_00 (vite)	entrée numérique (vite)	12	In	IN_02	entrée numérique
5	In	IN_04	entrée numérique	13	In	IN_03	entrée numérique
6	In	IN_01	entrée numérique	14	In	NEGLIM	capteur fin de course, direction négatif
7	In	HOME	capteur référence	15	In	NODE- DISABLE	disable Node
8	In	POSLIM	capteur fin de cour- se, direction positif				

10.7.6 Schéma de raccordement entrées/sorties numériques, X21A

INFORMATION AGND et DGND (connecteur X3) doivent être strappés !

10.8 Module d'expansion -2CAN-

Le connecteur X6 du SERVOSTAR transmet les signaux de l'interface RS232 et de l'interface CAN. L'affectation des broches des interfaces ne correspond donc pas à la norme et nécessite l'utilisation d'un câble spécial si les deux interfaces doivent être utilisées simultanément.

Le module d'expansion -2CAN- présente ces interfaces séparées sur deux connecteurs SubD. Les deux connecteurs CAN sont câblés en parallèle. Le commutateur permet d'ajouter une résistance de terminaison (120 Ω) au bus lorsque le SERVOSTAR constitue la terminaison du bus.

10.8.1 Montage de la carte d'expansion

Le module se visse à l'emplacement des options, une fois le couvercle enlevé (voir p 98):

INFORMATION

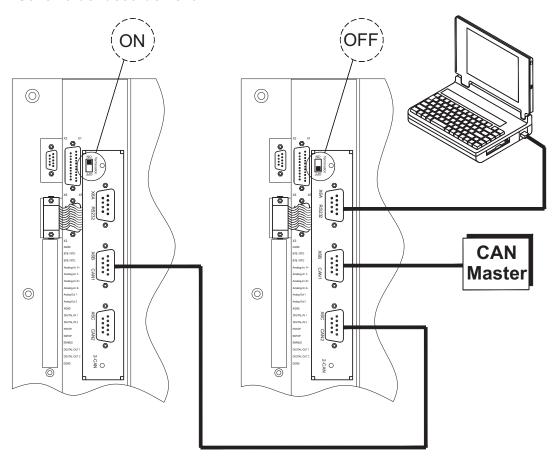
- Visser les boulons de distance dans les alésages filetés de la patte de fixation.
- Placez le module d'extension sur l'emplacement des options.
- Visser les vis dans les boulons de distance.
- Mettez la douille SubD9 dans le Connecteur X6 àu variateur.

10.8.2 Vue de face

10.8.3 Technique de raccordement

Il est possible d'utiliser du câble normalisé avec blindage pour les interfaces RS232 et CAN.

INFORMATION


Lorsque le variateur constitue le dernier élément du bus CAN, le commutateur de terminaison doit être basculé sur ON.

Sinon, le commutateur doit rester sur la position OFF (état à la livraison).

10.8.4 Affectation des connecteurs

RS232		CAN1=CAN2	
Broche X6A	Signal	Broche X6B=X6C	Signal
1	Vcc	1	
2	RxD	2	CAN-Low
3	TxD	3	CAN-GND
4		4	
5	GND	5	
6		6	
7		7	CAN-High
8		8	
9		9	

10.8.5 Schéma de raccordement

11	Annexe	
11.1	Glossaire	
В	Bloc de marche	Ensemble de données comprenant tous les paramètres de réglage de position, nécessaires à une instruction de déplacement
С	Capteur fin de course	Interrupteur de limitation de déplacement de la machine; exécution sous forme de contact de rupture.
	Circuit ballast	Transforme en chaleur, via la résistance de ballast, l'énergie excédentaire réinjectée par le moteur lors du freinage.
	Circuit intermédiaire	Tension de puissance redressée et lissée.
	Commutateur de puissance	Protection de l'installation avec contrôle de panne de phase.
	Comptages (counts)	Impulsions internes de comptage, 1 impulsion = 1/2 ²⁰ tour ⁻¹ .
	Convection libre	Circulation libre de l'air à des fins de refroidissement.
	Convertisseur digital de résolveur	Conversion des signaux analogiques de résolveur sous forme d'informations digitales.
	Court-circuit	lci : liaison électrique conductrice entre deux phases.
D	Décalage de phase	Compensation du décalage entre les champs électro-magnétique et magnétique dans le moteur.
	Dérive d'entrée	Modifications d'une entrée analogique dues à la température et au vieillissement.
F	Filtre de réseau	Appareil extérieur destiné à la dérivation de perturbations sur les câbles de l'alimentation en puissance vers PE.
	Fonctionnement à inversion	Fonctionnement avec changement périodique du sens de rotation.
	Format GRAY	Forme spéciale de représentation binaire des chiffres.
	Frein d'arrêt	Frein situé dans le moteur et que ne peut être serré que dans le cas d'un moteur arrêté.
Н	Horloge	Signal d'impulsion.
1	Impulsion zéro	Est émise une fois par rotation par des généra- teurs d'incrément. Sert à la remise à zéro de la machine.
	Interface de bus de champ	CANopen, PROFIBUS, SERCOS, EtherCAT etc.
	Interface génératrice d'incrément	Indication de position via 2 signaux décalés à 90°, pas d'indication absolue de position.
	Interface SSI	Sortie cyclique de la position sérielle, absolue.
	Ipeak, Courant de crête	Valeur effective du courant d'impulsion.
	Irms, Courant effectif	Valeur effective du courant permanent.
K	KP, Amplification P	Amplification proportionnelle d'un circuit de régulation.

М	Machine	Ensemble constitué de pièces ou dispositifs reliés entre eux et dont l'un au moins est mobile.
	Mise à la terre	Liaison électrique conductrice entre une phase et PE.
	Mise en circuit (Enable)	Mettre en service, valider - Signal de mise en service pour le variateur.
	Mise hors circuit (Disable)	Mise hors service, invalider. Suppression du signal MISE EN CIRCUIT (ENABLE) (0 V ou ouvert).
N	Noyau torique	Tore ferrite destinés à l'é-limination des parasites.
0	Optocoupleur	Liaison optique entre deux systèmes électriquement indépendants.
Р	PID-T2	Constante de temps du filtre pour la sortie du régulateur de vitesse.
	Protection thermique	Commutateur actionné sous l'effet de la chaleur, monté dans l'enroulement du moteur (PTC).
	Puissance continue du circuit ballast	Puissance moyenne qui peut être convertie dans le circuit ballast.
	Puissance d'impulsion du circuit balla	st Puissance maximale qui peut être convertie dans le circuit ballast.
R	Rampes SW (valeurs de consigne)	Limitation de la vitesse de modification de la valeur de consigne de la vitesse.
	Régulateur de courant	Règle la différence entre les valeurs de consigne et effective du courant à 0. Sortie : Tension de sortie de puissance.
	Régulateur de positionnement	Règle la différence entre les valeurs nominale et effective de position à 0. Sortie : Valeur de consigne de vitesse
	Régulateur de vitesse	Règle la différence entre la valeur de consigne de la vitesse et la vitesse effective à 0. Sortie : valeur de consigne du courant.
	Régulateur P	Circuit de réglage qui fonctionne exclusivement de manière proportionnelle.
	Régulateur PID	Circuit de réglage à comportement proportionnel, intégral et différentiel.
	Remise à zéro	Réinitialisation du microprocesseur.
S	Séparation de potentiel	Découplé électriquement.
	Seuil I²t	Contrôle du courant effectif réellement requis Irms.
	Sortie de moniteur	Sortie d'une valeur de mesure analogique.
	Systèmes multiaxes	Machine à plusieurs axes d'entraînement autarciques.
Т	Tension de synchronisation	Amplitude perturbatrice pouvant être réglée par une entrée analogique (entrée différentielle).
	Tension tachymétrique	Tension proportionnelle à la valeur effective de vitesse.
	Tn, constante de temps intégrale	Partie intégrale du circuit de réglage.
V	Variateur	Elément de régulation de la vitesse et du couple d'un servo-moteur.
	Vitesse finale	Valeur maximale pour le cadrage de vitesse ±10V.

11.2 Numéros de commande

Vous trouverez les numéros de commande des accessoires tels que les câbles, les résistances ballast, les blocs d'alimentation, etc. dans le manuel des accessoires.

11.2.1 Variateurs

Article	Europe	L'Amérique du Nord
SERVOSTAR 640	DE-91419	S64001-NA
SERVOSTAR 670	DE-91955	S67001-NA

^{*=} NA signifie : sans carte d'extension intégrée

11.2.2 Cartes d'expansion

Article	Europe	L'Amérique du Nord
Carte d'expansion DeviceNet	DE-103571	OPT-DN
Carte d'expansion PROFIBUS	DE-90056	OPT-PB
Carte d'expansion SERCOS	DE-90879	OPT-SE
Carte d'expansion I/0-14/08	DE-90057	OPT-EI
Carte d'expansion EtherCAT	DE-108350	OPT-EC
Carte d'expansion SyngNet	DE-200073	OPT-SN
Module d'expansion 2CAN	DE-101174	pas disponible

11.2.3 Contre-fiches

Article	Europe	L'Amérique du Nord
Gegenstecker X3 (I/O)	DE-101695	CON-S6X3a
Gegenstecker X4 (24V)	DE-92143	CON-S6X4a
Gegenstecker X10 (AS)	DE-101696	CON-S6X10
Gegenstecker X15 (DeviceNet)	DE-106368	CON-S6X15

Cette page a été laissée sciemment vierge!

11.3	Répertoire analyt	.ique

Α	Abréviations	M	Maintenance	
	Adresse de station CAN 91		Master-Slave	. 5
	Affichage DEL		Messages d'alarme	. 9
	Altitude d'implantation		Messages de défaut	. 9
	Aération 24		Mise en marche et arrêt	2
	Données techniques		Mise en service	. 7
_			Mise hors service	. 1
В	BISS, interface		Mise à la terre	
	BTB/RTO		Schéma de raccordement	
	Blindage Schéma de raccordement		installation	. J
	installation		Modules Condensateur	4
С	CANopen, interface 70		Montage	. 3
O	Capteurs fin de course, entrées 67		Moteur, interface	4
	Cartes d'expansion	N	NSTOP, Interface	. 6
	DEVICENET		Nettovage	. 1
	ETHERCAT		Niveau sonore	. 2
	Guide d'installation		Normes	
	I/O-14/08		Numéros de commande	
	SERCOS	Р	PC, raccordement	
	SYNQNET		PSTOP, Interface	. 6
	Circuit ballast		Particularités techniques	. 2
	Circuit intermédiaire, interface 46		Plaque signalétique	. I
	Clé de type		Position des fiches	4
	Codeur sinus sans piste de données, interface 54		Protection externe	2
	Codeur sinus, interface		Puissance optique	10
	ComCoder, interface	Q	Quickstart	. 8
	Composants d'un servosystème 41	R	ROD, interface	
	Conformité CE	1	RS232/PC, interface	
	Couples de serrage, connecteurs		Raccordement secteur, interface	. 4
	Courant de fuite		Remargues en matière de sécurité	. 1
	Câblage		Réparation	. 1
	Câble PC		Réseaux d'alimentation	. 4
D	Degré de pollution		Résistance ballast Interface ext	1
	Directives et normes		particularités techniques	. 4
	Désinstallation		Résolveur, interface	. 5
E	Emballage	s	SSI, interface	
	Emulations codeur 63		Schéma de raccordement	
	Entretien		Sections des conducteurs	. 2
	Entrées		Sorties	
	DIGI-IN 1/2		Analog Out 1/2	. 6
	NSTOP		BTB/ŘTO	. 6
	Val. de cons. analog 65		Stockage	. 0
	Validation (Enable) 67		Symbole de masse	3
	Etendue de la livraison		Symboles utilisés	
	Exigences par rapport au matériel 80		Système à plusieurs axes	_
F	Frein d'arrêt du moteur 26		Exemple de raccordement	. 9
G	Glossaire		Paramétrage	. 9
	Guide d'installation des carte d'expansion 98	-		
Н	Hall, interface	Т	Taux de bauds	
••	Humidité de l'air en service		Technique de connexion Température ambiante	. 4
1	Impulsion/sens, interface 61		Tension auxiliaire 24V, interface	. 4
•	· · · · · · · · · · · · · · · · · · ·		Tensions d'alimentation	. 2
	Installation Cartes d'expansion		Transport	. 1
	Logiciel		Type de protection	. 2
	mécanique	U	Utilisation conforme	
	électrique		Logiciel	. 7
			Variateur	. 1:
L	Lieu de montage		Utilisation des touches	
		٧	Val. de cons. analog	. 6
			Verrouillage de redémarrage -AS	. 7
			Vibrations	. 2
		1	viiesse de iransmission	1(1

Service

Nous voulons vous offrir un service optimal et rapide. Pour cela, prenez contact avec l'établissement de vente compétent. Si vous deviez ne pas les connaître, contactez soit le service clientèle.

Europe

KOLLMORGEN

Internet www.kollmorgen.com/en-gb Archiv www.wiki-kollmorgen.eu Support https://kdn.kollmorgen.com/ E-Mail technik@kollmorgen.com Tel.: +49 (0)2102 - 9394 - 0 Fax: +49 (0)2102 - 9394 - 3155

KOLLMORGEN EU Website

European File Archive

L'Amérique du Nord

KOLLMORGEN

Internet www.kollmorgen.com/en-us Support https://kdn.kollmorgen.com/ E-Mail support@kollmorgen.com Tel.: +1 - 540 - 633 - 3545 Fax: +1 - 540 - 639 - 4162

KOLLMORGEN
US Website

KOLLMORGEN

Developer Network

L'Amérique du Sud

KOLLMORGEN

Internet www.kollmorgen.com/pt-br Support https://kdn.kollmorgen.com/ E-Mail contato@kollmorgen.com Tel.: +55 11 4615 - 6300

KOLLMORGEN Brazil Website

Asia

KOLLMORGEN

Internet www.kollmorgen.cn

Support https://kdn.kollmorgen.com/ E-Mail sales.china@kollmorgen.com

Tel: +86 - 400 661 2802

KOLLMORGEN CN Website